教案是教師自身學習和提高的過程,通過編寫教案可以不斷完善自己的教學方法和經驗。如何根據學生的學習特點和需求來制定教學目標?不同學科和年級的教案范例,讓我們一起學習借鑒。
新高一數學必修一第二章教案篇一
1、教材(教學內容)。
2、設計理念。
3、教學目標。
情感態(tài)度與價值觀目標:引導學生學會閱讀數學教材,學會發(fā)現和欣賞數學的理性之美、
4、重點難點。
重點:任意角三角函數的定義、
難點:任意角三角函數這一概念的理解(函數模型的建立)、類比與化歸思想的滲透、
5、學情分析。
6、教法分析。
7、學法分析。
本課時先通過“閱讀”學習法,引導學生改造已有的認知結構,再通過類比學習法引導學生形成“任意角的三角函數的定義”,最后引導學生運用類比學習法,來研究三角函數一些基本性質和符號問題,從而使學生形成新的認識結構,達成教學目標。
新高一數學必修一第二章教案篇二
(1)通過實物操作,增強學生的直觀感知。
(2)能根據幾何結構特征對空間物體進行分類。
(3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結構特征。
(4)會表示有關于幾何體以及柱、錐、臺的分類。
2.過程與方法。
(1)讓學生通過直觀感受空間物體,從實物中概括出柱、錐、臺、球的幾何結構特征。
(2)讓學生觀察、討論、歸納、概括所學的知識。
3.情感態(tài)度與價值觀。
(1)使學生感受空間幾何體存在于現實生活周圍,增強學生學習的積極性,同時提高學生的觀察能力。
(2)培養(yǎng)學生的空間想象能力和抽象括能力。
二、教學重點、難點。
重點:讓學生感受大量空間實物及模型、概括出柱、錐、臺、球的結構特征。
難點:柱、錐、臺、球的結構特征的概括。
三、教學用具。
(1)學法:觀察、思考、交流、討論、概括。
(2)實物模型、投影儀。
四、教學思路。
(一)創(chuàng)設情景,揭示課題。
1.教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結構特征如何?引導學生回憶,舉例和相互交流。教師對學生的活動及時給予評價。
2.所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺、球結構特征的空間物體),你能通過觀察。根據某種標準對這些空間物體進行分類嗎?這是我們所要學習的內容。
(二)、研探新知。
1.引導學生觀察物體、思考、交流、討論,對物體進行分類,分辯棱柱、圓柱、棱錐。
3.組織學生分組討論,每小組選出一名同學發(fā)表本組討論結果。在此基礎上得出棱柱的主要結構特征。(1)有兩個面互相平行;(2)其余各面都是平行四邊形;(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
4.教師與學生結合圖形共同得出棱柱相關概念以及棱柱的表示。
6.以類似的方法,讓學生思考、討論、概括出棱錐、棱臺的結構特征,并得出相關的概念,分類以及表示。
7.讓學生觀察圓柱,并實物模型演示,如何得到圓柱,從而概括出圓標的概念以及相關的概念及圓柱的表示。
8.引導學生以類似的方法思考圓錐、圓臺、球的結構特征,以及相關概念和表示,借助實物模型演示引導學生思考、討論、概括。
9.教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。
(三)質疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學生思考。
1.有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)。
2.棱柱的何兩個平面都可以作為棱柱的底面嗎?
3.課本p8,習題1.1a組第1題。
5.棱臺與棱柱、棱錐有什么關系?圓臺與圓柱、圓錐呢?
四、鞏固深化。
練習:課本p7練習1、2(1)(2)。
課本p8習題1.1第2、3、4題。
五、歸納整理。
由學生整理學習了哪些內容。
六、布置作業(yè)。
課本p8練習題1.1b組第1題。
課外練習課本p8習題1.1b組第2題。
1.2.1空間幾何體的三視圖(1課時)。
新高一數學必修一第二章教案篇三
三、在細胞質中,除了細胞器外,還有呈膠質狀態(tài)的細胞質基質。
細胞質:包括細胞器和細胞質基質。
四、電子顯微鏡下看到的是亞顯微結構,普通顯微鏡下看到顯微結構。
光鏡能看到:細胞質,線粒體,葉綠體,液泡,細胞壁。
實驗:用高倍顯微鏡觀察葉綠體和線粒體。
健那綠染液是將活細胞中線粒體染色的專一性染料,可以使活細胞中的線粒體呈現藍綠色。
材料:新鮮的蘚類的葉(葉片薄,直接觀察)。
菠菜葉稍帶葉肉的下表皮(上表皮起保護作用,幾乎無葉綠體;下表皮海綿組織,有氣孔保衛(wèi)細胞,有葉綠體)。
五、分泌蛋白的合成和運輸。
有些蛋白質是在細胞內合成后,分泌到細胞外起作用,這類蛋白叫分泌蛋白。如消化酶(催化作用)、抗體(免疫)和一部分激素(信息傳遞)。
核糖體內質網高爾基體細胞膜。
(合成肽鏈)(加工成蛋白質)(進一步加工)(囊泡與細胞膜融合,蛋白質釋放)。
分泌蛋白從合成至分泌到細胞外利用到的細胞器?
答:核糖體、內質網、高爾基體、線粒體。
分泌蛋白從合成至分泌到細胞外利用到的結構?
核糖體、內質網、高爾基體、線粒體、細胞核、囊泡、細胞膜。
六、生物膜系統(tǒng)。
1、概念:細胞膜、核膜,各種細胞器的膜共同組成的生物膜系統(tǒng)。
2、作用:使細胞具有穩(wěn)定內部環(huán)境物質運輸、能量轉換、信息傳遞;為各種酶提供大量附著位點,是許多生化反應的場所;把各種細胞器分隔開,保證生命活動高效、有序進行。
3、內質網膜內連核膜外連細胞膜還和線粒體膜直接相連。
經過囊泡與高爾基體膜間接相連。
新高一數學必修一第二章教案篇四
(1)理解函數的概念;。
(2)了解區(qū)間的概念;。
2、目標解析。
(2)了解區(qū)間的概念就是指能夠體會用區(qū)間表示數集的意義和作用;。
【問題診斷分析】在本節(jié)課的教學中,學生可能遇到的問題是函數的概念及符號的理解,產生這一問題的原因是:函數本身就是一個抽象的概念,對學生來說一個難點。要解決這一問題,就要在通過從實際問題中抽象概況函數的概念,培養(yǎng)學生的抽象概況能力,其中關鍵是理論聯(lián)系實際,把抽象轉化為具體。
【教學過程】。
問題1:一枚炮彈發(fā)射后,經過26s落到地面擊中目標.炮彈的射高為845m,且炮彈距離地面的高度h(單位:m)隨時間t(單位:s)變化的規(guī)律是:h=130t-5t2.
1.1這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?
1.2高度變量h與時間變量t之間的對應關系是否為函數?若是,其自變量是什么?
設計意圖:通過以上問題,讓學生正確理解讓學生體會用解析式或圖象刻畫兩個變量之間的依賴關系,從問題的實際意義可知,在t的變化范圍內任給一個t,按照給定的對應關系,都有的一個高度h與之對應。
問題2:分析教科書中的實例(2),引導學生看圖并啟發(fā):在t的變化t按照給定的圖象,都有的一個臭氧層空洞面積s與之相對應。
問題3:要求學生仿照實例(1)、(2),描述實例(3)中恩格爾系數和時間的關系。
設計意圖:通過這些問題,讓學生理解得到函數的定義,培養(yǎng)學生的歸納、概況的能力。
新高一數學必修一第二章教案篇五
了解現實世界和日常生活中的不等關系,了解不等式(組)的實際背景.
(2)一元二次不等式。
會從實際情境中抽象出一元二次不等式模型.
通過函數圖象了解一元二次不等式與相應的二次函數、一元二次方程的聯(lián)系.
會解一元二次不等式,對給定的一元二次不等式,會設計求解的程序框圖.
(3)二元一次不等式組與簡單線性規(guī)劃問題。
會從實際情境中抽象出二元一次不等式組.
了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組.
會從實際情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決.
新高一數學必修一第二章教案篇六
(2)利用平面直角坐標系解決直線與圓的位置關系;
(3)會用“數形結合”的數學思想解決問題、
用坐標法解決幾何問題的步驟:
第二步:通過代數運算,解決代數問題;
第三步:將代數運算結果“翻譯”成幾何結論、
重點與難點:直線與圓的方程的應用、
問 題設計意圖師生活動
生:回顧,說出自己的看法、
2、解決直線與圓的位置關系,你將采用什么方法?
生:回顧、思考、討論、交流,得到解決問題的方法、
問 題設計意圖師生活動
3、閱讀并思考教科書上的例4,你將選擇什么方 法解決例4的'問題
生:自 學例4,并完成練習題1、2、
生:建立適當的直角坐標系, 探求解決問題的方法、
8、小結:
(1)利用“坐標法”解決問對知識進行歸納概括,體會利 師:指導 學生完成練習題、
生:閱讀教科書的例3,并完成第
問 題設計意圖師生活動
題的需要準備什么工作?
(2)如何建立直角坐標系,才能易于解決平面幾何問題?
(3)你認為學好“坐標法”解決問題的關鍵是什么?
新高一數學必修一第二章教案篇七
1. 閱讀課本 練習止.
2. 回答問題
(1)課本內容分成幾個層次?每個層次的中心內容是什么?
(2)層次間的聯(lián)系是什么?
(3)對數函數的定義是什么?
(4)對數函數與指數函數有什么關系?
3. 完成 練習
4. 小結.
二、方法指導
1. 在學習對數函數時,同學們應從熟悉的指數問題出發(fā),通過對指數函數的認識逐步轉化為對對數函數的認識,而且畫對數函數圖象時,既要考慮到對底數的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內,便于觀察圖象的特征,找出共性,歸納性質.
一、提問題
1. 對數函數的自變量和函數分別在指數函數中是什么?
2.兩個函數如果互為反函數,則他們的值域,定義域有什么關系?
3.是否所有的函數都有反函數?試舉例說明.
二、變題目
1. 試求下列函數的反函數:
(1) ; (2) ;
(3) ; (4) .
2. 求下列函數的定義域:
(1) ; (2) ; (3) .
3. 已知 則 = ; 的定義域為 .
1.對數函數的'有關概念
(1)把函數 叫做對數函數, 叫做對數函數的底數;
(2)以10為底數的對數函數 為常用對數函數;
(3)以無理數 為底數的對數函數 為自然對數函數.
2. 反函數的概念
在指數函數 中, 是自變量, 是 的函數,其定義域是 ,值域是 ;在對數函數 中, 是自變量, 是 的函數,其定義域是 ,值域是 ,像這樣的兩個函數叫做互為反函數.
3. 與對數函數有關的定義域的求法:
4. 舉例說明如何求反函數.
一、課外作業(yè): 習題3-5 a組 1,2,3, b組1,
二、課外思考:
1. 求定義域: .
2. 求使函數 的函數值恒為負值的 的取值范圍.
新高一數學必修一第二章教案篇八
1、教材(教學內容)。
本課時主要研究任意角三角函數的定義。三角函數是一類重要的基本初等函數,是描述周期性現象的重要數學模型,本課時的內容具有承前啟后的重要作用:承前是因為可以用函數的定義來抽象和規(guī)范三角函數的定義,同時也可以類比研究函數的模式和方法來研究三角函數;啟后是指定義了三角函數之后,就可以進一步研究三角函數的性質及圖象特征,并體會三角函數在解決具有周期性變化規(guī)律問題中的作用,從而更深入地領會數學在其它領域中的重要應用。
2、設計理念。
本堂課采用“問題解決”教學模式,在課堂上既充分發(fā)揮學生的主體作用,又體現了教師的引導作用。整堂課先通過問題引導學生梳理已有的知識結構,展開合理的聯(lián)想,提出整堂課要解決的中心問題:圓周運動等具周期性規(guī)律運動可以建立函數模型來刻畫嗎?從而引導學生帶著問題閱讀和鉆研教材,引發(fā)認知沖突,再通過問題引導學生改造或重構已有的認知結構,并運用類比方法,形成“任意角三角函數的定義”這一新的概念,最后通過例題與練習,將任意角三角函數的定義,內化為學生新的認識結構,從而達成教學目標。
3、教學目標。
知識與技能目標:形成并掌握任意角三角函數的定義,并學會運用這一定義,解決相關問題。
過程與方法目標:體會數學建模思想、類比思想和化歸思想在數學新概念形成中的重要作用。
情感態(tài)度與價值觀目標:引導學生學會閱讀數學教材,學會發(fā)現和欣賞數學的理性之美。
4、重點難點。
重點:任意角三角函數的定義。
難點:任意角三角函數這一概念的理解(函數模型的建立)、類比與化歸思想的滲透。
5、學情分析。
學生已有的認知結構:函數的概念、平面直角坐標系的概念、任意角和弧度制的相關概念、以直角三角形為載體的銳角三角函數的概念。在教學過程中,需要先將學生的以直角三角形為載體的銳角三角函數的概念改造為以象限角為載體的銳角三角函數,并形成以角的終邊與單位園的交點的坐標來表示的銳角三角函數的概念,再拓展到任意角的三角函數的定義,從而使學生形成新的認知結構。
6、教法分析。
“問題解決”教學法,是以問題為主線,引導和驅動學生的思維和學習活動,并通過問題,引導學生的質疑和討論,充分展示學生的思維過程,最后在解決問題的過程中形成新的認知結構。這種教學模式能較好地體現課堂上老師的主導作用,也能充分發(fā)揮課堂上學生的主體作用。
7、學法分析。
本課時先通過“閱讀”學習法,引導學生改造已有的認知結構,再通過類比學習法引導學生形成“任意角的三角函數的定義”,最后引導學生運用類比學習法,來研究三角函數一些基本性質和符號問題,從而使學生形成新的認識結構,達成教學目標。
新高一數學必修一第二章教案篇九
了解數列的概念和幾種簡單的表示方法(列表、圖象、通項公式).
了解數列是自變量為正整數的一類函數。
(2)等差數列、等比數列。
理解等差數列、等比數列的概念。
掌握等差數列、等比數列的通項公式與前項和公式。
能在具體的問題情境中,識別數列的等差關系或等比關系,并能用有關知識解決相應的問題。
了解等差數列與一次函數、等比數列與指數函數的關系。
新高一數學必修一第二章教案篇十
本節(jié)課是“空間幾何體的三視圖和直觀圖”的第一課時,主要內容是投影和三視圖,這部分知識是立體幾何的基礎之一,一方面它是對上一節(jié)空間幾何體結構特征的再一次強化,畫出空間幾何體的三視圖并能將三視圖還原為直觀圖,是建立空間概念的基礎和訓練學生幾何直觀能力的有效手段。另外,三視圖部分也是新課程高考的重要內容之一,常常結合給出的三視圖求給定幾何體的表面積或體積設置在選擇或填空中。同時,三視圖在工程建設、機械制造中有著廣泛應用,同時也為學生進入高一層學府學習有很大的幫助。所以在人們的日常生活中有著重要意義。
二、教學目標。
(1)知識與技能:能畫出簡單空間圖形(長方體,球,圓柱,圓錐,棱柱等的簡易組合)的三視圖,能識別上述三視圖表示的立體模型,從而進一步熟悉簡單幾何體的結構特征。
(2)過程與方法:通過直觀感知,操作確認,提高學生的空間想象能力、幾何直觀能力,培養(yǎng)學生的應用意識。
(3)情感、態(tài)度與價值觀:讓感受數學就在身邊,提高學生學習立體幾何的興趣,培養(yǎng)學生相互交流、相互合作的精神。
三、設計思路。
本節(jié)課的主要任務是引導學生完成由立體圖形到三視圖,再由三視圖想象立體圖形的復雜過程。直觀感知操作確認是新課程幾何課堂的一個突出特點,也是這節(jié)課的設計思路。通過大量的多媒體直觀,實物直觀使學生獲得了對三視圖的感性認識,通過學生的觀察思考,動手實踐,操作練習,實現認知從感性認識上升為理性認識。培養(yǎng)學生的空間想象能力,幾何直觀能力為學習立體幾何打下基礎。
教學的重點、難點。
(一)重點:畫出空間幾何體及簡單組合體的三視圖,體會在作三視圖時應遵循的“長對正、高平齊、寬相等”的原則。
(二)難點:識別三視圖所表示的空間幾何體,即:將三視圖還原為直觀圖。
四、學生現實分析。
本節(jié)首先簡單介紹了中心投影和平行投影,中心投影和平行投影是日常生活中最常見的兩種投影形式,學生具有這方面的直接經驗和基礎。投影和三視圖雖為高中新增內容,但學生在初中有一定基礎,在七年級上冊“從不同方向看”的基礎上給出了三視圖的概念。到了九年級下冊則是在介紹了投影后,用投影的方法給出了三視圖的概念,這一概念已基本接近了高中的三視圖定義,只是在名字上略有差異。初中叫做主視圖、左視圖、俯視圖。進入高中后特別是再次學習和認識了柱、錐、臺等幾何體的概念后,學生在空間想象能力方面有了一定的提高,所以,給出了正視圖、側視圖、俯視圖的概念。這些概念的變化也說明了學生年齡特點和思維差異。
五、教學方法。
(1)教學方法及教學手段。
針對本節(jié)課知識是由抽象到具體再到抽象、空間思維難度較大的特點,我采用的教法是直觀教學法、啟導發(fā)現法。
在教學中,通過創(chuàng)設問題情境,充分調動學生學習的積極性和主動性,并引導啟發(fā)學生動眼、動腦、動手、同時采用多媒體的教學手段,加強直觀性和啟發(fā)性,解決了教師“口說無憑”的尷尬境地,增大了課堂容量,提高了課堂效率。
(2)學法指導。
力爭在新課程要求的大背景下組織教學,為學生創(chuàng)設良好的問題情境,留給學生充分的思考空間,在學生的辯證和討論前提下,發(fā)揮教師的概括和引領的作用。
新高一數學必修一第二章教案篇十一
1.要讀好課本。
有些“自我感覺良好”的學生,常輕視課本中基礎知識、基本技能和基本方法的學習與訓練,經常是知道怎么做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高騖遠,重“量”輕“質”,陷入題海,到正規(guī)作業(yè)或考試中不是演算出錯就是中途“卡殼”。因此,同學們應從高一開始,增強自己從課本入手進行研究的意識。
2.要記好筆記。
首先,在課堂教學中培養(yǎng)好的聽課習慣是很重要的。當然聽是主要的,聽能使注意力集中,要把老師講的關鍵性部分聽懂、聽會。聽的時候注意思考、分析問題,但是光聽不記,或光記不聽必然顧此失彼,課堂效益低下,因此應適當地有目的性的記好筆記,領會課上老師的主要精神與意圖??茖W的記筆記可以提高45分鐘課堂效益。
3.要做好作業(yè)。
在課堂、課外練習中培養(yǎng)良好的作業(yè)習慣也很有必要.在作業(yè)中不但做得整齊、清潔,培養(yǎng)一種美感,還要有條理,這是培養(yǎng)邏輯能力的一條有效途徑,必須獨立完成。同時可以培養(yǎng)一種獨立思考和解題正確的責任感。在作業(yè)時要提倡效率,應該十分鐘完成的作業(yè),不拖到半小時完成,疲疲憊憊的作業(yè)習慣使思維松散、精力不集中,這對培養(yǎng)數學能力是有害而無益的。
4.要寫好總結。
一個人不斷接受新知識,不斷遭遇挫折產生疑問,不斷地總結,才有不斷地提高?!安粫偨Y的同學,他的能力就不會提高,挫折經驗是成功的基石?!弊匀唤邕m者生存的生物進化過程便是最好的例證。學習要經??偨Y規(guī)律,目的就是為了更一步的發(fā)展。
通過與老師、同學平時的接觸交流,逐步總結出一般性的學習步驟,它包括:制定計劃、課前自學、專心上課、及時復習、獨立作業(yè)、解決疑難、系統(tǒng)小結和課外學習幾個方面,簡單概括為四個環(huán)節(jié)(預習、上課、整理、作業(yè))和一個步驟(復習總結)。每一個環(huán)節(jié)都有較深刻的內容,帶有較強的目的性、針對性,要落實到位。堅持“兩先兩后一小結”(先預習后聽課,先復習后做作業(yè),寫好每個單元的總結)的學習習慣。
1.課前預習教材。課前可以把教材上第二天老師要講的內容看一下,看看哪些能看懂,哪些不懂。這樣老師在講課的時候我們就能帶著問題去聽,把自己沒看懂的問題聽懂。
2.上課專心聽講。這是很重要的,很多同學以為自己什么都弄懂了,就自己做自己的題目。其實即使是自己看懂了的,也可以看看老師也沒有另外的理解方法,老師的方法是不是比自己好。聽老師有時候講比自己看更好。
小編推薦:高一數學怎么學才能學好。
3.課后認真復習。剛學的知識,還沒完全被消化吸收成為自己的知識,如果不及時復習,就很容易忘記。所以,課后一定要抽出一些時間,及時對所學進行鞏固。
4.通過習題鞏固。數學是理科,需要通過一定量的習題來鞏固,量變積累到了一定量才能質變嘛。這個并非要各位打題海戰(zhàn)術,只要求各位做到熟練為止。
5.錯題反復研究。自己準備一個錯題本,把考試時候做錯的題目記錄下來,寫上做錯的原因,反復研究,避免再次出錯。
新高一數學必修一第二章教案篇十二
1、知識目標:使學生理解指數函數的定義,初步掌握指數函數的圖像和性質。
2、能力目標:通過定義的引入,圖像特征的觀察、發(fā)現過程使學生懂得理論與實踐的辯證關系,適時滲透分類討論的數學思想,培養(yǎng)學生的探索發(fā)現能力和分析問題、解決問題的能力。
3、情感目標:通過學生的參與過程,培養(yǎng)他們手腦并用、多思勤練的良好學習習慣和勇于探索、鍥而不舍的治學精神。
新高一數學必修一第二章教案篇十三
教學目標。
3.讓學生深刻理解向量在處理平面幾何問題中的優(yōu)越性.
教學重難點。
教學重點:用向量方法解決實際問題的基本方法:向量法解決幾何問題的“三步曲”.
教學難點:如何將幾何等實際問題化歸為向量問題.
教學過程。
由于向量的線性運算和數量積運算具有鮮明的幾何背景,平面幾何圖形的許多性質,如平移、全等、相似、長度、夾角等都可以由向量的線性運算及數量積表示出來,因此,可用向量方法解決平面幾何中的一些問題,下面我們通過幾個具體實例,說明向量方法在平面幾何中的運用。
思考:
運用向量方法解決平面幾何問題可以分哪幾個步驟?
運用向量方法解決平面幾何問題可以分哪幾個步驟?
“三步曲”:
(2)通過向量運算,研究幾何元素之間的關系,如距離、夾角等問題;。
(3)把運算結果“翻譯”成幾何關系.
新高一數學必修一第二章教案篇一
1、教材(教學內容)。
2、設計理念。
3、教學目標。
情感態(tài)度與價值觀目標:引導學生學會閱讀數學教材,學會發(fā)現和欣賞數學的理性之美、
4、重點難點。
重點:任意角三角函數的定義、
難點:任意角三角函數這一概念的理解(函數模型的建立)、類比與化歸思想的滲透、
5、學情分析。
6、教法分析。
7、學法分析。
本課時先通過“閱讀”學習法,引導學生改造已有的認知結構,再通過類比學習法引導學生形成“任意角的三角函數的定義”,最后引導學生運用類比學習法,來研究三角函數一些基本性質和符號問題,從而使學生形成新的認識結構,達成教學目標。
新高一數學必修一第二章教案篇二
(1)通過實物操作,增強學生的直觀感知。
(2)能根據幾何結構特征對空間物體進行分類。
(3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結構特征。
(4)會表示有關于幾何體以及柱、錐、臺的分類。
2.過程與方法。
(1)讓學生通過直觀感受空間物體,從實物中概括出柱、錐、臺、球的幾何結構特征。
(2)讓學生觀察、討論、歸納、概括所學的知識。
3.情感態(tài)度與價值觀。
(1)使學生感受空間幾何體存在于現實生活周圍,增強學生學習的積極性,同時提高學生的觀察能力。
(2)培養(yǎng)學生的空間想象能力和抽象括能力。
二、教學重點、難點。
重點:讓學生感受大量空間實物及模型、概括出柱、錐、臺、球的結構特征。
難點:柱、錐、臺、球的結構特征的概括。
三、教學用具。
(1)學法:觀察、思考、交流、討論、概括。
(2)實物模型、投影儀。
四、教學思路。
(一)創(chuàng)設情景,揭示課題。
1.教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結構特征如何?引導學生回憶,舉例和相互交流。教師對學生的活動及時給予評價。
2.所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺、球結構特征的空間物體),你能通過觀察。根據某種標準對這些空間物體進行分類嗎?這是我們所要學習的內容。
(二)、研探新知。
1.引導學生觀察物體、思考、交流、討論,對物體進行分類,分辯棱柱、圓柱、棱錐。
3.組織學生分組討論,每小組選出一名同學發(fā)表本組討論結果。在此基礎上得出棱柱的主要結構特征。(1)有兩個面互相平行;(2)其余各面都是平行四邊形;(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
4.教師與學生結合圖形共同得出棱柱相關概念以及棱柱的表示。
6.以類似的方法,讓學生思考、討論、概括出棱錐、棱臺的結構特征,并得出相關的概念,分類以及表示。
7.讓學生觀察圓柱,并實物模型演示,如何得到圓柱,從而概括出圓標的概念以及相關的概念及圓柱的表示。
8.引導學生以類似的方法思考圓錐、圓臺、球的結構特征,以及相關概念和表示,借助實物模型演示引導學生思考、討論、概括。
9.教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。
(三)質疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學生思考。
1.有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)。
2.棱柱的何兩個平面都可以作為棱柱的底面嗎?
3.課本p8,習題1.1a組第1題。
5.棱臺與棱柱、棱錐有什么關系?圓臺與圓柱、圓錐呢?
四、鞏固深化。
練習:課本p7練習1、2(1)(2)。
課本p8習題1.1第2、3、4題。
五、歸納整理。
由學生整理學習了哪些內容。
六、布置作業(yè)。
課本p8練習題1.1b組第1題。
課外練習課本p8習題1.1b組第2題。
1.2.1空間幾何體的三視圖(1課時)。
新高一數學必修一第二章教案篇三
三、在細胞質中,除了細胞器外,還有呈膠質狀態(tài)的細胞質基質。
細胞質:包括細胞器和細胞質基質。
四、電子顯微鏡下看到的是亞顯微結構,普通顯微鏡下看到顯微結構。
光鏡能看到:細胞質,線粒體,葉綠體,液泡,細胞壁。
實驗:用高倍顯微鏡觀察葉綠體和線粒體。
健那綠染液是將活細胞中線粒體染色的專一性染料,可以使活細胞中的線粒體呈現藍綠色。
材料:新鮮的蘚類的葉(葉片薄,直接觀察)。
菠菜葉稍帶葉肉的下表皮(上表皮起保護作用,幾乎無葉綠體;下表皮海綿組織,有氣孔保衛(wèi)細胞,有葉綠體)。
五、分泌蛋白的合成和運輸。
有些蛋白質是在細胞內合成后,分泌到細胞外起作用,這類蛋白叫分泌蛋白。如消化酶(催化作用)、抗體(免疫)和一部分激素(信息傳遞)。
核糖體內質網高爾基體細胞膜。
(合成肽鏈)(加工成蛋白質)(進一步加工)(囊泡與細胞膜融合,蛋白質釋放)。
分泌蛋白從合成至分泌到細胞外利用到的細胞器?
答:核糖體、內質網、高爾基體、線粒體。
分泌蛋白從合成至分泌到細胞外利用到的結構?
核糖體、內質網、高爾基體、線粒體、細胞核、囊泡、細胞膜。
六、生物膜系統(tǒng)。
1、概念:細胞膜、核膜,各種細胞器的膜共同組成的生物膜系統(tǒng)。
2、作用:使細胞具有穩(wěn)定內部環(huán)境物質運輸、能量轉換、信息傳遞;為各種酶提供大量附著位點,是許多生化反應的場所;把各種細胞器分隔開,保證生命活動高效、有序進行。
3、內質網膜內連核膜外連細胞膜還和線粒體膜直接相連。
經過囊泡與高爾基體膜間接相連。
新高一數學必修一第二章教案篇四
(1)理解函數的概念;。
(2)了解區(qū)間的概念;。
2、目標解析。
(2)了解區(qū)間的概念就是指能夠體會用區(qū)間表示數集的意義和作用;。
【問題診斷分析】在本節(jié)課的教學中,學生可能遇到的問題是函數的概念及符號的理解,產生這一問題的原因是:函數本身就是一個抽象的概念,對學生來說一個難點。要解決這一問題,就要在通過從實際問題中抽象概況函數的概念,培養(yǎng)學生的抽象概況能力,其中關鍵是理論聯(lián)系實際,把抽象轉化為具體。
【教學過程】。
問題1:一枚炮彈發(fā)射后,經過26s落到地面擊中目標.炮彈的射高為845m,且炮彈距離地面的高度h(單位:m)隨時間t(單位:s)變化的規(guī)律是:h=130t-5t2.
1.1這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?
1.2高度變量h與時間變量t之間的對應關系是否為函數?若是,其自變量是什么?
設計意圖:通過以上問題,讓學生正確理解讓學生體會用解析式或圖象刻畫兩個變量之間的依賴關系,從問題的實際意義可知,在t的變化范圍內任給一個t,按照給定的對應關系,都有的一個高度h與之對應。
問題2:分析教科書中的實例(2),引導學生看圖并啟發(fā):在t的變化t按照給定的圖象,都有的一個臭氧層空洞面積s與之相對應。
問題3:要求學生仿照實例(1)、(2),描述實例(3)中恩格爾系數和時間的關系。
設計意圖:通過這些問題,讓學生理解得到函數的定義,培養(yǎng)學生的歸納、概況的能力。
新高一數學必修一第二章教案篇五
了解現實世界和日常生活中的不等關系,了解不等式(組)的實際背景.
(2)一元二次不等式。
會從實際情境中抽象出一元二次不等式模型.
通過函數圖象了解一元二次不等式與相應的二次函數、一元二次方程的聯(lián)系.
會解一元二次不等式,對給定的一元二次不等式,會設計求解的程序框圖.
(3)二元一次不等式組與簡單線性規(guī)劃問題。
會從實際情境中抽象出二元一次不等式組.
了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組.
會從實際情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決.
新高一數學必修一第二章教案篇六
(2)利用平面直角坐標系解決直線與圓的位置關系;
(3)會用“數形結合”的數學思想解決問題、
用坐標法解決幾何問題的步驟:
第二步:通過代數運算,解決代數問題;
第三步:將代數運算結果“翻譯”成幾何結論、
重點與難點:直線與圓的方程的應用、
問 題設計意圖師生活動
生:回顧,說出自己的看法、
2、解決直線與圓的位置關系,你將采用什么方法?
生:回顧、思考、討論、交流,得到解決問題的方法、
問 題設計意圖師生活動
3、閱讀并思考教科書上的例4,你將選擇什么方 法解決例4的'問題
生:自 學例4,并完成練習題1、2、
生:建立適當的直角坐標系, 探求解決問題的方法、
8、小結:
(1)利用“坐標法”解決問對知識進行歸納概括,體會利 師:指導 學生完成練習題、
生:閱讀教科書的例3,并完成第
問 題設計意圖師生活動
題的需要準備什么工作?
(2)如何建立直角坐標系,才能易于解決平面幾何問題?
(3)你認為學好“坐標法”解決問題的關鍵是什么?
新高一數學必修一第二章教案篇七
1. 閱讀課本 練習止.
2. 回答問題
(1)課本內容分成幾個層次?每個層次的中心內容是什么?
(2)層次間的聯(lián)系是什么?
(3)對數函數的定義是什么?
(4)對數函數與指數函數有什么關系?
3. 完成 練習
4. 小結.
二、方法指導
1. 在學習對數函數時,同學們應從熟悉的指數問題出發(fā),通過對指數函數的認識逐步轉化為對對數函數的認識,而且畫對數函數圖象時,既要考慮到對底數的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內,便于觀察圖象的特征,找出共性,歸納性質.
一、提問題
1. 對數函數的自變量和函數分別在指數函數中是什么?
2.兩個函數如果互為反函數,則他們的值域,定義域有什么關系?
3.是否所有的函數都有反函數?試舉例說明.
二、變題目
1. 試求下列函數的反函數:
(1) ; (2) ;
(3) ; (4) .
2. 求下列函數的定義域:
(1) ; (2) ; (3) .
3. 已知 則 = ; 的定義域為 .
1.對數函數的'有關概念
(1)把函數 叫做對數函數, 叫做對數函數的底數;
(2)以10為底數的對數函數 為常用對數函數;
(3)以無理數 為底數的對數函數 為自然對數函數.
2. 反函數的概念
在指數函數 中, 是自變量, 是 的函數,其定義域是 ,值域是 ;在對數函數 中, 是自變量, 是 的函數,其定義域是 ,值域是 ,像這樣的兩個函數叫做互為反函數.
3. 與對數函數有關的定義域的求法:
4. 舉例說明如何求反函數.
一、課外作業(yè): 習題3-5 a組 1,2,3, b組1,
二、課外思考:
1. 求定義域: .
2. 求使函數 的函數值恒為負值的 的取值范圍.
新高一數學必修一第二章教案篇八
1、教材(教學內容)。
本課時主要研究任意角三角函數的定義。三角函數是一類重要的基本初等函數,是描述周期性現象的重要數學模型,本課時的內容具有承前啟后的重要作用:承前是因為可以用函數的定義來抽象和規(guī)范三角函數的定義,同時也可以類比研究函數的模式和方法來研究三角函數;啟后是指定義了三角函數之后,就可以進一步研究三角函數的性質及圖象特征,并體會三角函數在解決具有周期性變化規(guī)律問題中的作用,從而更深入地領會數學在其它領域中的重要應用。
2、設計理念。
本堂課采用“問題解決”教學模式,在課堂上既充分發(fā)揮學生的主體作用,又體現了教師的引導作用。整堂課先通過問題引導學生梳理已有的知識結構,展開合理的聯(lián)想,提出整堂課要解決的中心問題:圓周運動等具周期性規(guī)律運動可以建立函數模型來刻畫嗎?從而引導學生帶著問題閱讀和鉆研教材,引發(fā)認知沖突,再通過問題引導學生改造或重構已有的認知結構,并運用類比方法,形成“任意角三角函數的定義”這一新的概念,最后通過例題與練習,將任意角三角函數的定義,內化為學生新的認識結構,從而達成教學目標。
3、教學目標。
知識與技能目標:形成并掌握任意角三角函數的定義,并學會運用這一定義,解決相關問題。
過程與方法目標:體會數學建模思想、類比思想和化歸思想在數學新概念形成中的重要作用。
情感態(tài)度與價值觀目標:引導學生學會閱讀數學教材,學會發(fā)現和欣賞數學的理性之美。
4、重點難點。
重點:任意角三角函數的定義。
難點:任意角三角函數這一概念的理解(函數模型的建立)、類比與化歸思想的滲透。
5、學情分析。
學生已有的認知結構:函數的概念、平面直角坐標系的概念、任意角和弧度制的相關概念、以直角三角形為載體的銳角三角函數的概念。在教學過程中,需要先將學生的以直角三角形為載體的銳角三角函數的概念改造為以象限角為載體的銳角三角函數,并形成以角的終邊與單位園的交點的坐標來表示的銳角三角函數的概念,再拓展到任意角的三角函數的定義,從而使學生形成新的認知結構。
6、教法分析。
“問題解決”教學法,是以問題為主線,引導和驅動學生的思維和學習活動,并通過問題,引導學生的質疑和討論,充分展示學生的思維過程,最后在解決問題的過程中形成新的認知結構。這種教學模式能較好地體現課堂上老師的主導作用,也能充分發(fā)揮課堂上學生的主體作用。
7、學法分析。
本課時先通過“閱讀”學習法,引導學生改造已有的認知結構,再通過類比學習法引導學生形成“任意角的三角函數的定義”,最后引導學生運用類比學習法,來研究三角函數一些基本性質和符號問題,從而使學生形成新的認識結構,達成教學目標。
新高一數學必修一第二章教案篇九
了解數列的概念和幾種簡單的表示方法(列表、圖象、通項公式).
了解數列是自變量為正整數的一類函數。
(2)等差數列、等比數列。
理解等差數列、等比數列的概念。
掌握等差數列、等比數列的通項公式與前項和公式。
能在具體的問題情境中,識別數列的等差關系或等比關系,并能用有關知識解決相應的問題。
了解等差數列與一次函數、等比數列與指數函數的關系。
新高一數學必修一第二章教案篇十
本節(jié)課是“空間幾何體的三視圖和直觀圖”的第一課時,主要內容是投影和三視圖,這部分知識是立體幾何的基礎之一,一方面它是對上一節(jié)空間幾何體結構特征的再一次強化,畫出空間幾何體的三視圖并能將三視圖還原為直觀圖,是建立空間概念的基礎和訓練學生幾何直觀能力的有效手段。另外,三視圖部分也是新課程高考的重要內容之一,常常結合給出的三視圖求給定幾何體的表面積或體積設置在選擇或填空中。同時,三視圖在工程建設、機械制造中有著廣泛應用,同時也為學生進入高一層學府學習有很大的幫助。所以在人們的日常生活中有著重要意義。
二、教學目標。
(1)知識與技能:能畫出簡單空間圖形(長方體,球,圓柱,圓錐,棱柱等的簡易組合)的三視圖,能識別上述三視圖表示的立體模型,從而進一步熟悉簡單幾何體的結構特征。
(2)過程與方法:通過直觀感知,操作確認,提高學生的空間想象能力、幾何直觀能力,培養(yǎng)學生的應用意識。
(3)情感、態(tài)度與價值觀:讓感受數學就在身邊,提高學生學習立體幾何的興趣,培養(yǎng)學生相互交流、相互合作的精神。
三、設計思路。
本節(jié)課的主要任務是引導學生完成由立體圖形到三視圖,再由三視圖想象立體圖形的復雜過程。直觀感知操作確認是新課程幾何課堂的一個突出特點,也是這節(jié)課的設計思路。通過大量的多媒體直觀,實物直觀使學生獲得了對三視圖的感性認識,通過學生的觀察思考,動手實踐,操作練習,實現認知從感性認識上升為理性認識。培養(yǎng)學生的空間想象能力,幾何直觀能力為學習立體幾何打下基礎。
教學的重點、難點。
(一)重點:畫出空間幾何體及簡單組合體的三視圖,體會在作三視圖時應遵循的“長對正、高平齊、寬相等”的原則。
(二)難點:識別三視圖所表示的空間幾何體,即:將三視圖還原為直觀圖。
四、學生現實分析。
本節(jié)首先簡單介紹了中心投影和平行投影,中心投影和平行投影是日常生活中最常見的兩種投影形式,學生具有這方面的直接經驗和基礎。投影和三視圖雖為高中新增內容,但學生在初中有一定基礎,在七年級上冊“從不同方向看”的基礎上給出了三視圖的概念。到了九年級下冊則是在介紹了投影后,用投影的方法給出了三視圖的概念,這一概念已基本接近了高中的三視圖定義,只是在名字上略有差異。初中叫做主視圖、左視圖、俯視圖。進入高中后特別是再次學習和認識了柱、錐、臺等幾何體的概念后,學生在空間想象能力方面有了一定的提高,所以,給出了正視圖、側視圖、俯視圖的概念。這些概念的變化也說明了學生年齡特點和思維差異。
五、教學方法。
(1)教學方法及教學手段。
針對本節(jié)課知識是由抽象到具體再到抽象、空間思維難度較大的特點,我采用的教法是直觀教學法、啟導發(fā)現法。
在教學中,通過創(chuàng)設問題情境,充分調動學生學習的積極性和主動性,并引導啟發(fā)學生動眼、動腦、動手、同時采用多媒體的教學手段,加強直觀性和啟發(fā)性,解決了教師“口說無憑”的尷尬境地,增大了課堂容量,提高了課堂效率。
(2)學法指導。
力爭在新課程要求的大背景下組織教學,為學生創(chuàng)設良好的問題情境,留給學生充分的思考空間,在學生的辯證和討論前提下,發(fā)揮教師的概括和引領的作用。
新高一數學必修一第二章教案篇十一
1.要讀好課本。
有些“自我感覺良好”的學生,常輕視課本中基礎知識、基本技能和基本方法的學習與訓練,經常是知道怎么做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高騖遠,重“量”輕“質”,陷入題海,到正規(guī)作業(yè)或考試中不是演算出錯就是中途“卡殼”。因此,同學們應從高一開始,增強自己從課本入手進行研究的意識。
2.要記好筆記。
首先,在課堂教學中培養(yǎng)好的聽課習慣是很重要的。當然聽是主要的,聽能使注意力集中,要把老師講的關鍵性部分聽懂、聽會。聽的時候注意思考、分析問題,但是光聽不記,或光記不聽必然顧此失彼,課堂效益低下,因此應適當地有目的性的記好筆記,領會課上老師的主要精神與意圖??茖W的記筆記可以提高45分鐘課堂效益。
3.要做好作業(yè)。
在課堂、課外練習中培養(yǎng)良好的作業(yè)習慣也很有必要.在作業(yè)中不但做得整齊、清潔,培養(yǎng)一種美感,還要有條理,這是培養(yǎng)邏輯能力的一條有效途徑,必須獨立完成。同時可以培養(yǎng)一種獨立思考和解題正確的責任感。在作業(yè)時要提倡效率,應該十分鐘完成的作業(yè),不拖到半小時完成,疲疲憊憊的作業(yè)習慣使思維松散、精力不集中,這對培養(yǎng)數學能力是有害而無益的。
4.要寫好總結。
一個人不斷接受新知識,不斷遭遇挫折產生疑問,不斷地總結,才有不斷地提高?!安粫偨Y的同學,他的能力就不會提高,挫折經驗是成功的基石?!弊匀唤邕m者生存的生物進化過程便是最好的例證。學習要經??偨Y規(guī)律,目的就是為了更一步的發(fā)展。
通過與老師、同學平時的接觸交流,逐步總結出一般性的學習步驟,它包括:制定計劃、課前自學、專心上課、及時復習、獨立作業(yè)、解決疑難、系統(tǒng)小結和課外學習幾個方面,簡單概括為四個環(huán)節(jié)(預習、上課、整理、作業(yè))和一個步驟(復習總結)。每一個環(huán)節(jié)都有較深刻的內容,帶有較強的目的性、針對性,要落實到位。堅持“兩先兩后一小結”(先預習后聽課,先復習后做作業(yè),寫好每個單元的總結)的學習習慣。
1.課前預習教材。課前可以把教材上第二天老師要講的內容看一下,看看哪些能看懂,哪些不懂。這樣老師在講課的時候我們就能帶著問題去聽,把自己沒看懂的問題聽懂。
2.上課專心聽講。這是很重要的,很多同學以為自己什么都弄懂了,就自己做自己的題目。其實即使是自己看懂了的,也可以看看老師也沒有另外的理解方法,老師的方法是不是比自己好。聽老師有時候講比自己看更好。
小編推薦:高一數學怎么學才能學好。
3.課后認真復習。剛學的知識,還沒完全被消化吸收成為自己的知識,如果不及時復習,就很容易忘記。所以,課后一定要抽出一些時間,及時對所學進行鞏固。
4.通過習題鞏固。數學是理科,需要通過一定量的習題來鞏固,量變積累到了一定量才能質變嘛。這個并非要各位打題海戰(zhàn)術,只要求各位做到熟練為止。
5.錯題反復研究。自己準備一個錯題本,把考試時候做錯的題目記錄下來,寫上做錯的原因,反復研究,避免再次出錯。
新高一數學必修一第二章教案篇十二
1、知識目標:使學生理解指數函數的定義,初步掌握指數函數的圖像和性質。
2、能力目標:通過定義的引入,圖像特征的觀察、發(fā)現過程使學生懂得理論與實踐的辯證關系,適時滲透分類討論的數學思想,培養(yǎng)學生的探索發(fā)現能力和分析問題、解決問題的能力。
3、情感目標:通過學生的參與過程,培養(yǎng)他們手腦并用、多思勤練的良好學習習慣和勇于探索、鍥而不舍的治學精神。
新高一數學必修一第二章教案篇十三
教學目標。
3.讓學生深刻理解向量在處理平面幾何問題中的優(yōu)越性.
教學重難點。
教學重點:用向量方法解決實際問題的基本方法:向量法解決幾何問題的“三步曲”.
教學難點:如何將幾何等實際問題化歸為向量問題.
教學過程。
由于向量的線性運算和數量積運算具有鮮明的幾何背景,平面幾何圖形的許多性質,如平移、全等、相似、長度、夾角等都可以由向量的線性運算及數量積表示出來,因此,可用向量方法解決平面幾何中的一些問題,下面我們通過幾個具體實例,說明向量方法在平面幾何中的運用。
思考:
運用向量方法解決平面幾何問題可以分哪幾個步驟?
運用向量方法解決平面幾何問題可以分哪幾個步驟?
“三步曲”:
(2)通過向量運算,研究幾何元素之間的關系,如距離、夾角等問題;。
(3)把運算結果“翻譯”成幾何關系.