總結(jié)是不斷進步的基礎(chǔ),它可以幫助我們發(fā)現(xiàn)問題、總結(jié)經(jīng)驗,進而提高自己的能力。總結(jié)應該注重分析和歸納,將過去一段時間的經(jīng)驗和教訓總結(jié)出來。以下是小編為大家整理的詞語學習資料,希望能夠幫助大家更好地學習和掌握詞語。
圓柱的體積教學設(shè)計反思篇一
年級組集體備課時會嘆氣。
在走廊里碰頭時會感慨。
嘆氣、感慨地主要原因就是:近期作業(yè)的錯誤率很高(特別是學困生)。
這使我不免停下“匆匆的步伐”凝望著這些作業(yè)叉叉多的孩子。
什么地方出問題了?
一輪本子改下來錯誤有以下幾類。
1、優(yōu)等生:列出一個長長的算式,直接得出錯誤的結(jié)果(看不出是哪一步出錯,反正計算錯)。
4、不知靈活變通,一般來講3.14最好是最后再乘,這樣可以降低計算的復雜程度,減輕計算的強度;但部分學困生勇氣可嘉,不管那一套,列式中3.14在前面就先算;放在后頭就最后算,老實得可愛;當你在講計算技巧的時候可愛的孩子們還在埋頭苦算,結(jié)果錯誤百出。
1、學優(yōu)生:提出要求:不能一步得出結(jié)果,要脫式:關(guān)注做作業(yè)、打草稿的態(tài)度、習慣,養(yǎng)成草稿本清晰、數(shù)字清楚,可以避免匆忙之中抄錯數(shù)字導致整題出錯。
2、中等生、學困生:
(1)重視公式的熟練程度:通過演示、推導、同桌互說、單獨抽問、上黑板默寫等方法幫助夯實基礎(chǔ)。
(3)重點強記:3.14*1=…………………3.14*9=常用計算結(jié)果,達到熟練程度,提高練習時的計算速度和正確率,也可以用于檢驗計算過程中的結(jié)果正確與否。
(4)抓聽講習慣:要求要嚴格,教師針對問題進行分析、講評的時候,應要求所有學生抬頭關(guān)注,集中精力聽講(往往這樣的時候?qū)W困生是不睬你的,要適當?shù)暮八饋碚緜€1分多鐘,點一點他。),有了這個保證,講評的效果就有了,出錯的幾率就就會降低了。再結(jié)合以上措施,效果就會更好。
有了措施,就需要有行動——老師的行動、學生的行動都要跟上,希望一段日子后會有好效果。
也歡迎大家說說自己的好的做法,共同提高第二單元的質(zhì)量。
圓柱的體積教學設(shè)計反思篇二
用已學的圓柱體積知識解決生活中的實際問題,并滲透轉(zhuǎn)化思想。
經(jīng)歷探究不規(guī)則物體體積的轉(zhuǎn)化、測量和計算過程,讓學生在動手操作中初步建立“轉(zhuǎn)化”的數(shù)學思想,體驗“等積變形”的轉(zhuǎn)化過程。
通過實踐,讓學生在合作中建立協(xié)作精神,并增強學生“用數(shù)學”的意識。
教學重點:利用所學知識合理靈活地分析、解決不規(guī)則物體的體積的計算方法。
教學難點:轉(zhuǎn)化前后的溝通。
每組一個礦泉水瓶(課前統(tǒng)一搜集農(nóng)夫山泉礦泉水瓶,裝有適量清水,水高度分別為6、7、8、9厘米),直尺。
問:圓柱的體積怎么計算?體積和容積有什么區(qū)別?
2.揭題:這節(jié)課,我們要根據(jù)這些體積和容積的知識來解決生活中的實際問題。(完整板書:用圓柱的體積解決問題。)。
【設(shè)計意圖】通過復習圓柱的體積計算方法以及體積和容積之間的聯(lián)系和區(qū)別,為學習新知做好知識上的準備。
1.創(chuàng)設(shè)情境,提出問題。
每個小組桌子上有一個沒有裝滿水的礦泉水瓶。
教師:原本這是一瓶裝滿水的礦泉水,已經(jīng)喝了一部分,你能根據(jù)它來提一個數(shù)學問題嗎?(隨機板書)。
預設(shè)1:瓶子還有多少水?(剩下多少水?)。
預設(shè)2:喝了多少水?(也就是瓶子的空氣部分。)。
預設(shè)3:這個瓶子一共能裝多少水?(也就是這個瓶子的容積是多少?)。
2.你覺得你能輕松解決什么問題?
(1)預設(shè)1:瓶子有多少水?(怎么解決?)。
學生:瓶子里剩下的水呈圓柱狀,只要量出這個圓柱的底面直徑和高就能算出它的體積。
教師:需要用到什么工具?(直尺)你想利用直尺得到哪些數(shù)據(jù)?(底面直徑、水的高度)。
小結(jié):知道了底面直徑和水的高度,要解決這個問題的確輕而易舉。請你準備好直尺,或許等會兒有用哦!
(2)預設(shè)2:喝了多少水?
學生:喝掉部分的形狀是不規(guī)則,沒有辦法計算。
教師:當物體形狀不規(guī)則時,我們想求出它的體積可以怎么辦?
教師相機引導:能否將空氣部分變成一個規(guī)則的立體圖形呢?
學生能說出方法更好,不能說出則引導:我們不妨把瓶子倒過來看看,你發(fā)現(xiàn)了什么?
引導學生發(fā)現(xiàn):在瓶子倒置前后,水的體積不變,空氣的體積不變,因此,喝了多少水=倒置后空氣部分的體積,倒置后空氣部分是一個圓柱,要求出它的體積需要哪些數(shù)據(jù)?(倒置后空氣的高度)。
(3)怎么求這個礦泉水瓶的容積?引導學生得出:倒置前水的體積+倒置后空氣的體積=瓶子容積。
【設(shè)計意圖】課本中的例題呈現(xiàn)如下,
例題是直接呈現(xiàn)轉(zhuǎn)化方法的,我是想先屏蔽相關(guān)數(shù)據(jù)信息和方法,通過激發(fā)學生解決問題的內(nèi)在需求,根據(jù)自己的生活學習經(jīng)驗來想辦法解決,才有了對數(shù)學情境的改編,以期通過轉(zhuǎn)化、觀察、對比,讓學生發(fā)現(xiàn)倒置前后兩部分立體圖形之間的相同點,溝通兩部分體積之間的內(nèi)在聯(lián)系,順利地把新知轉(zhuǎn)化為舊知,分散了難點,從而找到解決問題的方法。
3.小組合作,測量計算。
(礦泉水瓶內(nèi)直徑為6cm)。
教師:方法找到了,接下來能否正確求出瓶子的容積就看你們的了!
(1)課件出示:
一個內(nèi)直徑是()的瓶子里,水的高度是(),把瓶蓋擰緊倒置放平,無水部分是圓柱形,高度是()。這個瓶子的容積是多少?(測量時取整厘米數(shù))。
(2)四人小組合作:
a.組長安排好分工:
要量出所需數(shù)據(jù),其他組員要監(jiān)督好測量方法與結(jié)果是否正確,要按要求把題目填完整。
b.組內(nèi)互相說一說:倒置前后哪兩部分的體積不變?
礦泉水瓶的容積=()+()。
c.做好以上準備工作后,利用所得數(shù)據(jù)獨立計算,再組內(nèi)校對結(jié)果是否正確。
【設(shè)計意圖】這一環(huán)節(jié)讓學生大膽動手操作,在實踐中不斷發(fā)現(xiàn)解決問題,在同伴的交流中拓展自己的思維,讓學生在合作中建立協(xié)作精神。
4.交流反饋。
教師巡查,選擇礦泉水瓶中原有水高度分別6、7、8、9厘米的同學板演。
瓶中水高度為6厘米的:
3.14×(6÷2)2×6+3.14×(6÷2)2×13。
=3.14×9×(6+13)。
≈537(毫升)。
瓶中水高度為7厘米的:
3.14×(6÷2)2×7+3.14×(6÷2)2×12。
=3.14×9×(7+12)。
≈537(毫升)。
瓶中水高度為8厘米的:
3.14×(6÷2)2×8+3.14×(6÷2)2×11。
=3.14×9×(8+11)。
≈537(毫升)。
瓶中水高度為9厘米的:
3.14×(6÷2)2×9+3.14×(6÷2)2×10。
=3.14×9×(9+10)。
≈537(毫升)。
教師:出示某品牌礦泉水瓶的標簽,上面寫著凈含量為550毫升,基本符合。
5.解答正確嗎?
教師引導學生回顧反思:剛才我們是怎樣解決問題的?
小結(jié):根據(jù)具體情況選擇合適的轉(zhuǎn)化方法,像這樣不規(guī)則立體圖形的體積可以轉(zhuǎn)化為規(guī)則的立體圖形來計算。
【設(shè)計意圖】通過回顧解決問題的過程,幫助學生把本環(huán)節(jié)的數(shù)學活動經(jīng)驗進行總結(jié),引導學生在后續(xù)的學習中碰到相似的問題也可同樣利用轉(zhuǎn)化的思想來解決。
1.數(shù)學書p27做一做。
(1)學生獨立思考,解決問題。
(2)把自己的想法與同桌說一說。
(3)交流反饋:重點交流如何轉(zhuǎn)化,倒置后哪兩部分體積不變?
求小明喝了多少水實際上是求礦泉水瓶上面無水部分的體積,這部分為不規(guī)則的立體圖形。
將水瓶倒置后不規(guī)則容器轉(zhuǎn)化成了圓柱:該圓柱體積=小明喝了的水。
3.14×(6÷2)2×10=282.6(毫升)。
(1)請學生計算,并反饋訂正。
(2)反饋要點:
整個吊瓶容積=圖像中空氣部分的容積+還剩下液體的體積。
根據(jù)圖象,可以得出在第12分鐘吊瓶有80毫升是空的。
剩下液體的體積=100-2.5×12=70(毫升)。
即整個吊瓶容積=80+70=150(毫升)。
【設(shè)計意圖】從生活中常見的吊瓶問題引出,感受數(shù)學與生活的密切聯(lián)系,能根據(jù)圖像提取解決問題的有效信息,既提升了所學知識,又關(guān)注了學生的思考,培養(yǎng)學生的分析、解決問題能力。
(2)討論方法:
a.重疊:假設(shè)把兩個大小一樣的斜截體拼成一個底面周長為9.42厘米,高為(4+6)厘米的圓柱,這個立體圖形的體積是新圓柱體積的一半。
b.切割:把這個立體圖形分為兩部分,下面是一個底面周長為9.42厘米,高為4厘米的圓柱體,上面是一個高為(6-4)厘米的圓柱斜截體,且體積是高為(6-4)厘米的圓柱體積的一半。
(3)用自己認可的方法計算,并進行反饋。
解法一:3.14×(9.42÷3.14÷2)2×10÷2=35.325(立方厘米)。
解法二:3.14×(9.42÷3.14÷2)2×4+3.14×(9.42÷3.14÷2)2×2÷2=35.325(立方厘米)。
(4)反饋小結(jié):可以有不同的轉(zhuǎn)化方法來解決問題。
【設(shè)計意圖】不滿足于一種方法的轉(zhuǎn)化,展示多種方法,開拓學生的思維。
教師:回憶一下,今天這節(jié)課有什么收獲?
教師和學生共同小結(jié):求不規(guī)則的立體圖形的體積可以將它轉(zhuǎn)化成為規(guī)則的立體圖形,這節(jié)課我們主要是將不規(guī)則的立體圖形轉(zhuǎn)化成為圓柱,用圓柱的體積計算方法來解決問題。
在解決問題時,主要要弄清楚轉(zhuǎn)化前后兩部分之間的關(guān)系。
【設(shè)計意圖】通過小結(jié),讓學生自主地對回顧本課所學知識進行梳理總結(jié),通過歸納與提煉,讓學生明確轉(zhuǎn)化思想在數(shù)學學習中的重要性。
圓柱的體積教學設(shè)計反思篇三
我采用多媒體的直觀教具相結(jié)合的手段,在圓柱體積公式推導過程中指導學生充分利用手中的學具、教具,學生在興趣盎然中經(jīng)歷了自主探究、獨立思考、分析整理、合作交流、總結(jié)歸納等過程,發(fā)現(xiàn)了教學問題的存在,經(jīng)歷了知識產(chǎn)生的過程,理解和掌握了數(shù)學基本知識,從而促進了學生的思維發(fā)展。這樣學生親身參與操作,有了空間感覺的體驗,也有了充分的思考空間。這樣設(shè)計我覺得能突破難點,課堂效果很好。
在課的設(shè)計上以學生為主、發(fā)揮學生的主體作用,要充分展示學生的思維過程,在學生動手實踐、交流討論和思考的時間上教師應合理把握。
圓柱的體積教學設(shè)計反思篇四
在進行圓柱的體積的導入時,課本上是先讓學生回憶“長方體、正方體的體積都可以用它們的底面積乘高來計算”,那么再接著馬上提問:“圓柱的體積怎樣計算呢?”讓學生們猜一猜,《圓柱體積》教學反思。
猜想計算方法固然有好處,但要讓學生馬上做實驗,理解圓柱體積計算公式的推導過程,我覺得這樣教學引入,學生的思維跳躍得太快,我認為,不妨在回憶了長方體、正方體體積計算方法之后,接著復習一下圓面積計算公式的推導過程,這樣有助于學生猜想,并能更好地聯(lián)系舊知,思維過度自然、流暢,便于學生的思維走向正確的方向,這時教師的引導才是行之有效的。
二、新課時,要實現(xiàn)人人參與,主動學習。
根據(jù)課標要求:學生進行數(shù)學探究時,教師應給予充分的思考空間,創(chuàng)設(shè)實踐操作的條件,營造出思考的環(huán)境氛圍。教學“圓柱的體積”時,示范演示推導過程:把圓柱的底面分成若干份(例如,分成16等份,還可以再多一些),然后把圓柱切開,照課本上的圖拼起來,圓柱體就轉(zhuǎn)化成一個近似的長方體;接著教師指導學生悟出這個長方體的長相當于圓柱的哪一部分的長度,寬是圓柱哪一部分的長度,高是圓柱的哪一部分的長度,圓柱的體積怎樣計算的道理,從而推導出圓柱體積的計算公式。學生如果沒有親身參與操作,就缺乏情感空間感覺的體驗,而且這部分又是小學階段立體圖形的教學難點,學生得不到充分的思考空間,也不利于教師營造思考的環(huán)境,不便于學生思考如何利用已知圖形體積和教學思想去解決這一問題。學生缺乏行為、認知的投入和積極的情感投入,所以,課堂效果差就可想而知了。
三、練習時,要形式多樣,層層遞進。
例題“練一練”中的題目都比較淺顯,學生還能容易掌握,但遇到多轉(zhuǎn)幾個彎的題目就束手無策了。所以,為了讓學生能熟練地掌握計算圓柱的體積,教師在設(shè)計練習時要多動腦,花心思去考慮怎樣才能讓學生用最短的時間完成不同類型的題目。在鞏固練習中,只要從這五種類型去考慮,做到面面俱到,逐層深入,由易到難,學生才能真正掌握好計算圓柱體積的方法。練習方式可以是填空、選擇、判斷、看圖計算、應用題等。達到掌握。
圓柱的體積教學設(shè)計反思篇五
在教學圓柱的體積時,我采用新的教學理念,讓學生自己動手實踐、自主探索與合作交流,在實踐中體驗,從而獲得知識。通過這節(jié)課的教學,我覺得成功之處有以下幾個方面:
圓柱的體積的導入,在回憶了長方體、正方體體積計算方法,并強調(diào)長方體、正方體的體積都可以用底面積乘高,接著復習一下圓面積計算公式的推導過程,這樣有助于學生猜想:“圓柱體是否可以轉(zhuǎn)化成我們學過的圖形呢?”激發(fā)學生好奇心,獨立思考問題,探索問題的愿望。這樣聯(lián)系舊知,導入新知,思維過度自然,易接受新知。
學生在探究新知時,教師要給予充分的思考空間,創(chuàng)設(shè)實踐操作的條件,營造出思考的環(huán)境氛圍。教學“圓柱的體積”時,學生親身參與操作,先用小刀把一根火腿腸切成一個圓柱體把圓柱的底面分成若干份(例如,分成12等份),然后把圓柱切開,再拼起來,()圓柱體就轉(zhuǎn)化成一個近似的長方體。找一找:這個長方體的長相當于圓柱的什么,寬是圓柱的什么,高是圓柱的什么。圓柱的體積就是長方體的體積,從而推導出圓柱體積的計算公式。
為了直觀、形象,讓學生觀看課件:圓轉(zhuǎn)化成近似長方形的過程,使學生很容易猜想出圓柱體也可以轉(zhuǎn)化成近似的長方體來得出體積公式。在推導圓柱體積公式的過程中,要求學生想象:“如果把圓柱的底面平均分成32份、64份……切開后拼成的物體會有什么變化?”學生雖然能說出“拼成的物體越來越接近長方體?!钡牵降灼闯傻膱D形怎樣更接近長方體?演示動畫后,學生不僅對這個切拼過程一目了然,同時又加深理解了圓柱體轉(zhuǎn)化成近似長方體的轉(zhuǎn)化方法。
為了培養(yǎng)學生解題的靈活性,進行分層練習,拓展知識,發(fā)散思維。如:已知圓柱底面積和高,怎樣求圓柱體積;已知圓柱底面半徑和高,怎樣求圓柱體積;已知圓柱底面直徑和高,怎樣求圓柱體積;已知圓柱底面周長和高,怎樣求圓柱體積;已知圓柱側(cè)面積和高,怎樣求圓柱體積;已知圓柱底面積和體積,怎樣求高;已知圓柱體積和高,怎樣求底面積等。
圓柱的體積教學設(shè)計反思篇六
2、提問:“能用一句話說說什么是圓柱的體積嗎?”
(學生互相討論后匯報,教師設(shè)疑)。
二、自主探究、
1、比較大小、探究圓柱的體積與哪些要素有關(guān)。
(1)先出示了兩個大小不等的圓柱體讓學生判斷哪個體積大?
(2)提問:“要比較兩個圓柱體的體積你有什么好辦法?”學生想到將圓柱體放進水中,比較哪個水面升得高。
(3)讓學生運用這樣的方法自己比較底等高不等和高等底不等的兩組圓柱的體積,并將實驗結(jié)果填入實驗報告1中。(課件出示)。
(4)學生通過動手操作匯報結(jié)論:當?shù)椎葧r,圓柱越高體積越大;當高等時,圓柱底面越大體積越大。即圓柱的體積的大小與它的底面積和高有關(guān)。
2、大膽猜想,感知體積公式,確定探究目標。
(1)再次設(shè)疑:如果要準確的知道哪個圓柱的體積大,大多少,你有什么好辦法?學生想如何計算圓柱的體積。
(2)引導學生回憶圓的面積公式和長方體的體積公式的推導過程。
(3)讓學生思考:怎樣計算圓柱的體積呢,依據(jù)學過的知識,你可以做出怎樣的假設(shè)?
(4)學生小組討論交流并匯報:圓柱平均分成若干小扇形體后應該也能夠轉(zhuǎn)化成一個近似長方體;圓柱的體積可能也是用底面積乘高來計算。
(5)讓學生依據(jù)假設(shè)結(jié)論分組測量圓柱c和圓柱d的有關(guān)數(shù)據(jù),用計算器計算體積,并填入實驗報告2中。(課件出示)。
4、確定方法,探究實驗,驗證體積公式。
(1)首先要求學生利用實驗工具,自主商討確定研究方法。
(2)學生通過討論交流確定了兩種驗證方案。
方案一:將圓柱c放入水中,驗證圓柱c的體積。
方案二:將學具中已分成若干分扇形塊的圓柱d拆拼成新的形體,計算新形體的體積,驗證圓柱d的體積。
(3)學生按照自己所設(shè)想的方案動手實驗,并記錄有關(guān)數(shù)據(jù),填入實驗報告2中。
(5)學生匯報:實驗的結(jié)果與猜想的結(jié)果基本相同。
(6)教師用課件演示將圓柱體轉(zhuǎn)化成長方體的過程,向?qū)W生明確圓柱的體積確實可以像計算長方體體積那樣,用底面積乘以高。
(7)小結(jié):
要想求出一個圓柱的體積,需要知道什么條件?
(8)學生自學第8頁例4上面的一段話:用字母表示公式。
學生反饋自學情況:
v=sh。
三、鞏固發(fā)展。
1、課件出示例4,學生獨立完成。
指名說說這樣列式的依據(jù)是什么。
2、鞏固反饋。
3、完成第9頁的“試一試”和練一練”中的兩道題。
(“練一練”只列式,不計算)。
集體訂正,說一說圓柱體的體積還可以怎樣算?
5、拓展練習。
(1)一個長方形的紙片長是6分米,寬4分米。用它分別圍成兩個圓柱體,a是用4分米做底高6分米,b是用6分米做底高是4分米它們的體積大小一樣嗎?請你計算說明理由。(得數(shù)保留兩位小數(shù))。
四、全課小結(jié):
談談這節(jié)課你有哪些收獲。
圓柱的體積教學設(shè)計反思篇七
今天第一節(jié)課荊校長和建英聽了我講的《圓柱的體積》,提出了幾點我應該注意和改進的地方。
一是,要注重課前的預習,圓柱的體積一課復習舊知環(huán)節(jié),需要學生回顧什么是體積,長方體正方體體積公式,回顧轉(zhuǎn)化的方法推導圓面積計算公式,需要回顧的舊知較多,所以可以課前設(shè)計成幾個問題讓學生預習,就可以避免課上學生由于對知識的遺忘,而浪費時間,影響課堂的高效。
二是,猜想圓柱的體積可能與什么有關(guān)這個環(huán)節(jié),由于注重讓學生猜想,感受,體驗,并通過媒體演示驗證猜想的正確性,有些浪費時間。
三是,推導體積公式環(huán)節(jié),我讓學生利用拆好的圓柱學具,兩人合作,圍繞三個問題進行探究“圓柱可以轉(zhuǎn)化為我們學過的哪個立體圖形,轉(zhuǎn)化后的圖形與圓柱之間有怎樣的.關(guān)系,利用這樣的關(guān)系可以推導出怎樣的公式”,學生合作的成果需要通過語言表達出來,所以之后的展示匯報環(huán)節(jié),我叫了三個學生上臺按照提示的三個問題完整的表述,最后有全體齊說,沒有讓學生再互相說一說,在說中再去感受推導的過程,我覺得這也是我欠缺的地方。
四是,練習反饋環(huán)節(jié),我依據(jù)學生推導出的四個公式,先讓學生看著這些公式說一說,求圓柱的體積需要知道什么條件,學生說出了四種情況:知道了半徑和高求體積;知道了周長和高求體積;知道了底面積和高求體積;知道了直徑和高求體積。我順勢出了四道這樣的練習題讓學生在本上完成并集體訂正,感覺練習的量不夠。
通過這節(jié)課,從荊校長和建英的評課中,我體會到要想提高課堂效率,首先,抓好課前預習,其次,注重用多種方式讓學生多說而且要說透,最后,注意各環(huán)節(jié)時間分配要合理,做到心中有數(shù)。還有就是要加大練習量,關(guān)注到每一個學生,對學生學習效果掌握程度做到了如指掌。
圓柱的體積教學設(shè)計反思篇八
1、知識與技能:理解教材中形體轉(zhuǎn)化的過程,掌握圓柱體積的計算公式,會用公式計算圓柱的體積,解決有關(guān)簡單的實際問題。拓展教材內(nèi)容,初步了解直柱體的相關(guān)知識。
2、過程與方法:利用教材空間,為學生搭建思維平臺。讓學生經(jīng)歷觀察、想象、思考、交流等教學活動過程,理解圓柱體積計算公式的推導過程,提高學生思維能力,同時體驗轉(zhuǎn)化和極限的思想。
3、情感與態(tài)度:挖掘教材內(nèi)涵,把圖形的變換過程,轉(zhuǎn)變?yōu)閷W生思維能力的培養(yǎng)、提高的過程,并進一步發(fā)展其空間觀念,領(lǐng)悟?qū)W習數(shù)學的方法,激發(fā)學生學習興趣,滲透事物是普遍聯(lián)系的唯物辯證思想。
理解圓柱體積計算公式的推導過程,運用圓柱體積計算公式準確解決實際問題。
正確理解圓柱體積計算公式的推導過程。
一、情境導入:
老師手拿一個圓柱形橡皮泥(大小適宜)。
1、師:通過前面的學習,關(guān)于圓柱你已經(jīng)知道什么?還想了解它的哪些知識?
生1:(已學知識)。
生2:圓柱是一種立體圖形,那么它的體積怎么計算?
2、師:聯(lián)系已經(jīng)掌握的有關(guān)立體圖形的知識,你能想辦法求出這個圓柱體的體積嗎?
生2:將這個圓柱放入一個盛有水的長方體容器中,量出上升了的水的長、寬、高,就可以求出它的體積。
生3:圓柱體在水中必須完全浸沒,而且水還不能溢出。
【學情分析:學生在五年級學習長方體、正方體有關(guān)知識的基礎(chǔ)上,很容易想到運用“排水法”來解決問題,所以這一環(huán)節(jié)也充分給予學生展示自我的機會,培養(yǎng)思維中的自信心。】教師在學生中找出小助手,幫助測量有關(guān)數(shù)據(jù),全體同學計算水的體積,并作記載。
師:運用轉(zhuǎn)化思想,聯(lián)系已學知識,解決新生問題,同學們真了不起!
4、師:如果要求壓路機前輪的體積或是求樓房中柱子的體積,還能不能用這種方法計算嗎?(不能)那么求圓柱的體積時是否也有一個簡單、易算的體積計算公式呢?今天我們就一起來研究圓柱體積的計算方法。
二、新舊過度:
教師引導學生觀察圓柱形實物。
1、
師:發(fā)揮你的想象,哪些平面圖形可以演變?yōu)閳A柱體?生1:以長方形的一條長為軸,把長方形旋轉(zhuǎn)一周,就形成一個圓柱體。
(教師演示:大小不同的長方形旋轉(zhuǎn)形成圓柱體。)。
生2:把一個圓形上下平移,移動過的軌跡就是圓柱體。(課件演示:大小不同的圓形上下垂直平移不同高度形成圓柱體。)。
師:通過剛才的演示過程你覺得圓柱的體積大小與什么有關(guān)?(圓柱的底面積和高)。
學生口述,同時課件演示圓形轉(zhuǎn)化為近似長方形的過程。
三、自主探究。
1、學生手拿圓柱實物,仔細觀察,獨立思考。
2、組織學生小組討論,把個人的想法在小組中交流,形成統(tǒng)一意見。
強調(diào):在討論過程中,教師參與其中,傾聽學生想法,調(diào)整匯報次序,同時提醒學生觀察手中圓柱實物。
3、匯報交流,統(tǒng)一意見。
生1:把一個圓剪拼成一個近似的長方形,然后把圓形和近似長方形同時向上平移相同的高度,這時他們的軌跡一個是圓柱體,一個是近似長方體,而且它們的體積相等。
(師:一個圓柱和一個長方體只要底面積和高分別相等,它們的體積就相等嗎?一會兒我們來解決這個問題。)。
生2:把圓柱的底面分成許多相等的扇形,再沿這些分割線把圓柱縱切開來,從而剪拼成一個近似的長方體。
(師:為什么是近似的長方體?———滲透數(shù)學極限思想)。
4、課件演示:
師:仔細觀察下面這組課件,和你想象的是否一樣?
演示兩次,第一次把圓柱平均分成16份,再剪拼成一個近似的長方形;第二次把圓柱平均分成32份,再剪拼成一個近似的長方形。
生:長方體的體積相當于圓柱的體積,長方體的底面積相當于圓柱的底面積,而且它們的高相等。
因為:長方體的體積=底面積×高。
四、實踐應用:
強調(diào)單位:90×20=1800(立方分米)。
2、再次拿出圓柱體橡皮泥,問:如果要用圓柱體積計算公式計算它的體積,你需要測量哪些數(shù)據(jù)?(底面直徑、高)。
生1:可能測量有誤差,并且還要保留。
生2:測量水的長、寬時,容器的厚度忽略不計,也能產(chǎn)生誤差。教師說明:每一個科學結(jié)論都必須經(jīng)過反復的實驗、計算,才能得到正確的結(jié)論,我們在學習上就要有這種不怕吃苦、勇于探索的精神。
(教師直接給出玻璃杯的底面直徑和高)。
六、全課小結(jié):
師:通過本節(jié)課的學習,你有什么收獲?
啟發(fā)。
一、充實教材,為提高學生思維能力搭建平臺。
課堂教學中讓學生在教師的啟發(fā)指導下,獨立思考、積極主動的去探究知識是怎樣形成的,才能真正使學生成為學習的主體。在教材中已經(jīng)提供了圖形轉(zhuǎn)化的過程,那么在沒有學具讓學生進行動手操作、親自感悟的情況下,怎樣讓學生的思維真正參與到知識的形成過程呢?作為教師,必須充實教材。課堂中讓學生動手測量計算所必需的數(shù)據(jù),自己感悟?qū)W習圓柱體積計算公式的必要性,合作探究圓柱體的轉(zhuǎn)化方法和過程。所有這些環(huán)節(jié)的設(shè)計,都在潛移默化中引導學生主動思考,主動參與,在思考與參與中提高了學生的思維能力。
二、借助教材,為提高學生思維能力尋找支點。
數(shù)學知識具有一定的結(jié)構(gòu),知識間存在密切的聯(lián)系,教學時要找出知識間的內(nèi)在聯(lián)系,幫助學生建立一個較完整的知識系統(tǒng)。教材中設(shè)計了引問“圓可以轉(zhuǎn)化成長方形計算面積,圓柱可以轉(zhuǎn)化成長方形計算體積嗎?”但我認為“面體過渡”在幾何領(lǐng)域中本身就是一個難點,而“面面互化”遷移到“體體互化”,就難上加難,所以設(shè)計中用較長時間溝通新舊知識間的聯(lián)系:排水法的應用,平面圖形演變?yōu)榱Ⅲw圖形的過程,圓面積的推導過程。在復習當中,學生的綜合運用能力得到提高,更重要的是為下一步學生的思維活動確立支點,進而提高學生的思維能力。
思考。
一、演示、觀察能否代替操作?
教材中提供了教具演示,但在本節(jié)教學前,始終沒有找到學生使用的操作學具,而自己也嘗試用土豆、橡皮泥等制作學具,都因為難度太大(粘接處)而告失敗,在無奈之余,設(shè)計了“獨立思考———小組探究———課件演示———教具操作”四個環(huán)節(jié)來突破本節(jié)難點。就學生理解、接受方面來說效果不錯。但沒有讓學生親自操作,總感覺影響學生思維發(fā)展。類似教學如:圓錐高的認識。
二、研究中的失誤會不會造成學生認知的“失誤”?
課堂中為求真實,進行了兩次實際測量(第一次測長方體中水的長寬高;第二次測圓柱形橡皮泥的底面直徑和高)。兩次計算結(jié)果的對比,使學生思維與課堂結(jié)構(gòu)都體現(xiàn)完整性。但由于種種誤差,計算結(jié)果很可能不會相等,這就可能會讓學生對結(jié)論產(chǎn)生懷疑(盡管教師已經(jīng)說明),那么是否有必要讓學生經(jīng)歷一個“失誤”的過程呢?類似教學如:圓周率的計算。
圓柱的體積教學設(shè)計反思篇九
掌握圓柱的體積計算公式,能夠正確計算圓柱的體積。
【過程與方法】。
通過觀察、類比、分析的過程,提高分析問題、解決問題的能力,發(fā)展空間觀念。
【情感態(tài)度價值觀】。
感受數(shù)學與生活的聯(lián)系,激發(fā)學習興趣,提高學習數(shù)學的自信心。
【教學重點】。
【教學難點】。
(一)引入新課。
提問:長方體和正方體的體積公式是什么?
(正方體)體積=底面積×高。今天我們再來研究另一個熟悉的幾何圖形,圓柱的體積公式。從而引出本節(jié)課題《圓柱的體積》。
(二)探索新知。
在大屏幕出示底面積和高都相等的長方體、正方體和圓柱。
提問:長方體和正方體的體積相等嗎?
預設(shè):根據(jù)長方體(正方體)體積=底面積×高,所以長方體和正方體體積相等。
預設(shè):圓柱的體積和底面積、高有關(guān),圓柱的體積公式=底面積×高。
預設(shè):可以把圓柱轉(zhuǎn)換成長方體。
預設(shè):學生分一分,拼一拼,組合成近似長方體的圖形。此時教師應借助多媒體設(shè)備展示把圓柱等份分成32份,64份甚至更多份的情境,隨著等份分割的份數(shù)越多,拼成的圖形就越接近長方體。
組織學生進行小組討論:觀察拼成的長方體和原來的圓柱具有怎樣的關(guān)系?5分鐘后請小組代表進行回答。
預設(shè):長方體的底面積、高和體積分別等于原來圓柱的底面積、高和體積。
提問:圓柱的體積公式是什么?
用大寫字母v表示圓柱的體積,s表示底面積,h表示圓柱的高,用字母表示圓柱的體積公式。
預設(shè):v=sh。
教師強調(diào)字母v、s是大寫,h是小寫。
追問:回顧探究圓柱體積公式的過程,有哪些心得體會?
預設(shè)1:可以用長方體體積公式推導出圓柱體體積公式;
預設(shè)2:把圓柱轉(zhuǎn)化成長方體,與探索圓面積的方法類似;
預設(shè)3:計算長方體、正方體、圓柱的體積都可以用底面積乘高。
(三)課堂練習。
試一試。
一個圓柱形零件,底面半徑是5厘米,高是8厘米。這個零件的體積是多少立方厘米?
(四)小結(jié)作業(yè)。
提問:通過本節(jié)課的學習有什么收獲?
課后作業(yè):找找生活當中的圓柱物體,量一量底面積和高,算一算物體體積。
圓柱的體積教學設(shè)計反思篇十
1、結(jié)合具體情境,讓學生探索并掌握圓柱體積的計算方法,并能運用計算公式解決簡單的實際問題。
2、讓學生經(jīng)歷觀察、實驗、猜想、證明等數(shù)學活動過程,發(fā)展合情推理能力和初步的演繹推理能力,滲透數(shù)學思想,體驗數(shù)學研究的方法。
3、通過圓柱體積計算公式的推導、運用的過程,體驗數(shù)學問題的探索性和挑戰(zhàn)性,感受數(shù)學思考過程的條理性和數(shù)學結(jié)論的確定性,獲得成功的喜悅。
掌握和運用圓柱體積計算公式。
一、情景引入。
2、提問:“能用一句話說說什么是圓柱的體積嗎?”
(設(shè)計意圖:在這個環(huán)節(jié)設(shè)計觀察活動,意圖是讓學生通過觀察自主得出圓柱體積的定義,進一步加深對體積概念的理解,并為下面的探究活動提供研究方法。)。
二、自主探究、
1、比較大小、探究圓柱的體積與哪些要素有關(guān)。
(1)、先出示了兩個大小不等的圓柱體讓學生判斷哪個體積大?
(2)、提問:“要比較兩個圓柱體的體積你有什么好辦法?”學生想到將圓柱體放進水中,比較哪個水面升得高。
(3)、讓學生運用這樣的方法自己比較底等高不等和高等底不等的兩組圓柱的體積.
(4)、學生通過動手操作匯報結(jié)論:當?shù)椎葧r,圓柱越高體積越大;當高等時,圓柱底面越大體積越大。即圓柱的體積的大小與它的底面積和高有關(guān)。
(設(shè)計意圖:本環(huán)節(jié)教學讓學生根據(jù)已有的知識解決簡單的問題,通過探究活動,引導學生找出決定圓柱體積的兩個因素,為學習新知識作鋪墊,同時也發(fā)展了學生的抽象概括能力。)。
2、大膽猜想,感知體積公式,確定探究目標。
(1)、再次設(shè)疑:如果要準確的知道哪個圓柱的體積大,大多少,你有什么好辦法?學生想如何計算圓柱的體積。
(2)、引導學生回憶圓的面積公式和長方體的體積公式的推導過程。
(3)、讓學生思考:怎樣計算圓柱的體積呢,依據(jù)學過的知識,你可以做出怎樣的假設(shè)?
(4)、學生小組討論交流并匯報:圓柱平均分成若干小扇形體后應該也能夠轉(zhuǎn)化成一個近似長方體;圓柱的體積可能也是用底面積乘高來計算。
(設(shè)計意圖:通過設(shè)疑使學生認識到學習圓柱體積公式的必要性,激發(fā)學生的探究興趣。接著通過設(shè)計猜想的過程,充分運用學生已有的知識經(jīng)驗,讓學生回憶了學習長方體體積時的實踐方法和將圓形轉(zhuǎn)化成長方形的過程,學生在如此豐富的知識經(jīng)驗基礎(chǔ)上就做到了心中有數(shù),猜想的膽量就更大,假想的合理性就更強。)。
4、確定方法,探究實驗,推導公式。
(1)、思考你發(fā)現(xiàn)了什么?
(5)、學生匯報:實驗的結(jié)果與猜想的結(jié)果基本相同。
(6)、教師用課件演示將圓柱體轉(zhuǎn)化成長方體的過程,向?qū)W生明確圓柱的體積確實可以像計算長方體體積那樣,用底面積乘以高。(課件出示)。
(7)、小結(jié):要想求出一個圓柱的體積,需要知道什么條件?
(8)、學生自學第17頁例4上面的一段話:用字母表示公式。
圓柱的體積教學設(shè)計反思篇十一
《圓錐的體積》一課的教學,是在掌握了圓錐的認識和圓柱的體積的基礎(chǔ)上進行的。多年的教學,讓我學習和累計了很多的教學經(jīng)驗。教學時我先故事導入激發(fā)學生的學習興趣,再讓學生大膽的猜想圓錐的體積公式,然后通過實驗操作來發(fā)現(xiàn)圓錐與等底等高的圓柱之間的關(guān)系,從而得出圓錐的體積等于和它等底等高的圓柱體積的三分之一,并能運用這個關(guān)系計算圓錐的體積,讓學生從感性認識上升到理性認識。
新課一開始,我就利用教師出示一筒米,師:將這筒米倒在桌上,會變成什么形狀情境導入,教師再演示削鉛筆:把一支圓柱形鉛筆的筆頭刨成圓錐形,讓學生觀察,猜測圓錐的體積和什么有關(guān),由于課件很形象直觀,學生很快聯(lián)系到了圓柱的體積,而且很容易想到應該是幾分之幾的關(guān)系。在猜想中學生的學習興趣高漲,更明確了學習的目標。教師從展示實物圖形到空間圖形,采用對比的方法,不斷加深學生對形體的認識。然后讓學生動手實驗,讓孩子親歷教學的驗證過程,從實驗中得出結(jié)論:等底等高的圓錐體體積是圓柱體體積的三分之一,從而推出圓錐的體積公式。這樣,就有一種水到渠成的感覺。對圓錐的體積建立了鮮明的印象之后,就應用公式解決實際的生活問題,起到鞏固深化知識點的作用。
1、情感的發(fā)展。
小學數(shù)學教學中的情感發(fā)展主要包括學生對數(shù)學、數(shù)學學習活動的興趣;自信心和意志力,學習數(shù)學的態(tài)度與學習習慣。本節(jié)課的教學,擺脫了傳統(tǒng)“灌”的教學,從引導學生發(fā)現(xiàn)問題、探索問題,學生在發(fā)現(xiàn)中激起興趣,從探索中尋找快樂,然后又應用知識解決問題。學生經(jīng)歷了一個探索性的學習過程,不知不覺地掌握了知識,發(fā)展了能力,增進了對數(shù)學的情感。學習變成了一個賞心悅目的活動。
2、思想的發(fā)展。
小學數(shù)學教材中,含有大量思想教育因素,是對學生進行教育的良好素材。教師在教學數(shù)學知識的同時,要注意發(fā)揮教材本身思想教育功能,不失時機地、潛移默化地滲透思想教育活動是兒童認識數(shù)學的重要方式。新課改提倡學生的自主活動,把數(shù)學學習的主動權(quán)交給學生,鼓勵每個學生積極參與教學活動,在教學中創(chuàng)設(shè)豐富多彩的活動情境,讓學生親自實踐,大膽探索。
練習設(shè)計從基本題入手,過渡到情境題,發(fā)展到綜合解決實際問題,這個過程中訓練了學生的解題能力,培養(yǎng)了運用所學知識解決實際問題的能力。
在教學后感覺到遺憾的是,由于教具的關(guān)系學生參與以小組合作學習的面很廣但小組合作分工不太合理。使每個學生不是全身心投入到探究實驗中去,這樣少部份學生的積極性調(diào)動不高,有點遺憾進行學習,沒有最大限度的發(fā)揮每個學生的自主學習的能力,這樣的學習雖然是培養(yǎng)了學生的能力。但合作意識還需加強。小組學生的試驗完成默契還需加強。
圓柱的體積教學設(shè)計反思篇十二
1、運用遷移規(guī)律,引導學生借助圓面積計算公式的推導方法來推導圓柱的體積計算公式,并理解其推導過程。
2、會用圓柱的體積計算公式計算圓柱形物體的體積或容積。
3、引導學生逐步學會轉(zhuǎn)化的數(shù)學思想和數(shù)學方法,培養(yǎng)學生解決實際問題的能力。
4、借助遠程教育的課件資源演示,培養(yǎng)學生抽象、概括的思維能力。
圓柱體體積計算公式的推導過程。
《數(shù)學課程標準》指出:“有效的數(shù)學學習活動不能單純地依賴模仿與記憶,動手實踐、自主探索與合作交流是學生學習數(shù)學的重要方式?!奔匆笪覀冊诮虒W中,要讓學生通過自主的知識建構(gòu)活動,學生的潛能得以開發(fā),情感、態(tài)度、價值觀得以培養(yǎng),從而提高學生的數(shù)學素養(yǎng)。因此根據(jù)本節(jié)課內(nèi)容的特點,這節(jié)課的教學將通過對圓柱體積知識的探究,重點培養(yǎng)學生探究數(shù)學知識的能力和方法。為了把“一切為了學生的發(fā)展”這一新的教學理念融入到了課堂教學之中。在課堂教學中將以學生的活動為主,讓學生通過親身體驗、實際操作來找出數(shù)學知識之間的內(nèi)在聯(lián)系。在學生學習過程中,充分運用了遠程教育資源中動畫、聲音、視頻文件,并進行了有效地整合。本節(jié)課將使用以下策略:
1、利用遷移規(guī)律引入新課,借助遠程資源為學生創(chuàng)設(shè)良好的學習情境。
2、以合作探究為主要的學習方式,充分發(fā)揮學生的自主性,體現(xiàn)學生的主體地位。
3、練習多樣化,層次化。
4、引導學生把知識轉(zhuǎn)化成相應的技能,從而提高靈活運用的能力,培養(yǎng)學生的綜合素質(zhì)。
一、回憶舊知,實現(xiàn)遷移。
1、學習圓的面積時,我們是怎樣推導出圓的面積計算公式的?利用多媒體課件動態(tài)演示把圓等分切割,拼成一個近似的長方形,找出圓與所拼成的長方形之間的關(guān)系,進而推導出圓面積計算公式的過程。
a.半徑5厘米。
b.直徑6分米。
二、指名說說自己想法。
教師引入:這節(jié)課我們就來研究如何將圓柱轉(zhuǎn)化成我們已經(jīng)學過的圖形來求出它的體積。(板書課題:圓柱的體積)。
2、生討論,交流。
三、驗證。
教師演示:。
(2)將圓柱的`底面、長方體的底面閃爍后移出來。提問:你學過將圓變成長方形嗎?
(3)再次出示圓柱形物體,動畫演示圓柱拼成近似長方體。讓學生取出圓柱體學具拼成近似長方體。
四、探索圓柱與所拼成的近似長方體之間的關(guān)系。
1、學生動手進行實驗。請每個小組拿出學具,并研究轉(zhuǎn)化后的長方體和原來圓柱體積、底面積、高之間的關(guān)系。
2、學生利用學具獨立操作(教師巡視、指導操作有困難的學生),思考并討論。
3、通過剛才的實驗你發(fā)現(xiàn)了什么?
4、學生匯報交流。
五、分析關(guān)系,總結(jié)公式引導學生發(fā)現(xiàn)并說出:
圓柱體轉(zhuǎn)化成長方體后,雖然形狀變了,但是長方體的體積和原來圓柱的體積相等,長方體的底面積等于圓柱的底面積,長方體的高等于圓柱的高??偨Y(jié)公式。
長方體的體積=底面積×高。
v=sh。
六、拓展訓練。
七、課堂總結(jié)。
長方體的體積=底面積×高。
v=sh。
[教學反思]。
1、這節(jié)課是通過觀察、猜想、操作驗證、鞏固、應用這幾個環(huán)節(jié)來完成的。學生在最佳的情景中通過實踐、探索、發(fā)現(xiàn),得到了“活”的知識,學到有價值的數(shù)學。
2、操作驗證是本節(jié)課的關(guān)鍵,為體現(xiàn)活動教學中學生“主動探索”的特點,我從問題入手,組織學生圍繞觀察猜想后展開驗證性的操作活動。學生以活動小組為單位,思維活躍,積極探索,學習能力、抽象概括能力和邏輯思維能力得到了提高。
3、充分利用媒體資源,化解難點,提高課堂效果;注重習題多樣化、層次化,拓展學生思維。
圓柱的體積教學設(shè)計反思篇十三
學情分析:
根據(jù)六年級的教學情況來看,班中絕大部分同學都能跟上現(xiàn)有的進度,通過本節(jié)課教學要使靈活運用圓柱體積的計算方法解決生活中一些簡單的問題,通過想象、操作等活動,理解圓柱體體積公式的推導過程,掌握計算公式;會運用公式計算圓柱的體積。
教學目標:
1.通過切割圓柱體,拼成近似的長方體,從而推導出圓柱的體積公式這一教學過程,向?qū)W生滲透轉(zhuǎn)化思想。
2.通過圓柱體體積公式的推導,培養(yǎng)學生的分析推理能力。
3.理解圓柱體體積公式的推導過程,掌握計算公式;會運用公式計算圓柱的體積。
教學重點:
教學難點:
教學用具:
教學過程:
一、復習引新。
1.求下面各圓的面積(回答)。
(1)r=1厘米;(2)d=4分米;(3)c=6.28米。
要求說出解題思路。
2.提問:什么叫體積?常用的體積單位有哪些?
3.已知長方體的底面積s和高h,怎樣計算長方體的體積?(板書:長方體的體積=底面積×高)。
二、探索新知。
1、根據(jù)學過的體積概念,說說什么是圓柱的體積。(板書課題)。
2、公式推導。(有條件的可分小組進行)。
(1)請同學指出圓柱體的底面積和高。
(2)回顧圓面積公式的推導。(切拼轉(zhuǎn)化)。
3、回顧了圓的面積公式推導,你有什么啟發(fā)?
生答:把圓柱轉(zhuǎn)化成長方體計算體積。
4、動手操作。
請2位同學上臺用教具來演示,邊演示邊講解。
把圓柱的底面平均分成16份,切開后把它拼成一個近似地長方體。
多請幾組同學上臺講解,完善語言。
提問:為什么用“近似”這個詞?
5、教師演示。
把圓柱拼成了一個近似的長方體。
6、如果把圓柱的底面平均分成32份、64份……切開后拼成的物體會有什么變化?
生答:拼成的物體越來越接近長方體。
追問:為什么?
生答:平均分的份數(shù)越多,每份就越小,弧就越短,拼起來的長方體的長就越近似于一條線段,這樣整個形體就越近似于長方體。
7、剛才我們通過動手操作,把圓柱切拼成一個近似的長方體。
師:拼成的長方體和原來的圓柱有什么聯(lián)系?請與同學們進行交流?
出示討論題。
(1)、拼成的長方體的底面積與原來圓柱的底面積有什么關(guān)系?為什么是相等的?
(2)、拼成的長方體的高與原來圓柱的高有什么關(guān)系?為什么是相等的?
(3)、拼成的長方體的體積與原來圓柱的體積有什么關(guān)系?為什么?
板書:
長方體體積底面積高。
8、根據(jù)上面的實驗和討論,想一想,可以怎樣求圓柱的體積?
生答:把圓柱切拼成一個近似的長方體,拼成的長方體的底面積等于圓柱的底面積,拼成長方體的高等于圓柱的高,因為長方體體積=底面積×高,所以圓柱體積=底面積×高。
9、用字母如何表示。
v=sh。
10、小結(jié)。
圓柱的體積是怎樣推導出來的?計算圓柱的體積必須知道哪些條件?
11、教學算一算。
審題。提問:你能獨立完成這題嗎?指名一同學板演,其余學生做在練習本上。集體訂正:列式依據(jù)是什么?應注意哪些問題?最后結(jié)果用體積單位)。
12、教學“試一試”
小結(jié):求圓柱的體積,必須知道底面積和高。如果不知道底面積,只知道半徑r,通過什么途徑求出圓柱的體積?如果知道d呢?知道c呢?知道r、d、c,都要先求出底面積再求體積。
三、鞏固練習。
課后“練一練”里的練習題。
四、課堂小結(jié)。
這節(jié)課學習了什么內(nèi)容?圓柱的體積怎樣計算,這個公式是怎樣得到的?指出:這節(jié)課,我們通過轉(zhuǎn)化,把圓柱體切拼轉(zhuǎn)化成長方體,(在課題下板書:圓柱轉(zhuǎn)化長方體)得出了圓柱體的體積計算公式v=sh。
圓柱的體積教學設(shè)計反思篇十四
1、使學生熟練掌握圓柱的體積公式,能正確計算圓柱體積或圓柱形容器的容積。
2、使學生體驗解決問題策略的多樣化,不斷激發(fā)學生以數(shù)學的好奇心和求知欲。
3、培養(yǎng)學生分析問題,解決問題及實踐應用能力。
掌握有關(guān)圓柱的表面積和體積的計算,會綜合運用。
運用所學的知識解決生活中的實際問題。
一、復習回顧。
1、下列圖形的面積公式是什么?
長方形的面積=。
正方形的面積=。
平行四邊形的面積=。
梯形的面積=。
2、長方體的表面積=。
如果圓柱的體積用v表示,底面積用s表示,高用h表示,則圓柱的體積公式用字母表示為。
如果圓柱的底面半徑為r,高用h表示,則圓柱的體積公式為。
三、例題學習:
四、課堂練習。
1)底面積0.6平方米,高0.5米2)底面半徑4厘米,高12厘米。
3)底面直徑5分米,高6分米。
圓柱的體積教學設(shè)計反思篇十五
圓柱的體積的導入,課本是先讓學生回憶“長方體、正方體的體積都可以用它們的底面積乘高來計算”,再接著馬上提問:“圓柱的體積怎樣計算呢?”讓學生們猜一猜。猜想計算方法固然有好處,但要讓學生馬上做實驗理解圓柱體積計算公式的推導過程,我覺得這樣教學引入,學生的思維跳躍得太快,銜接性不強,不利于學生理解和掌握實驗的用意,課堂效果就會明顯不佳。我認為,不妨在回憶了長方體、正方體體積計算方法之后,接著復習一下圓面積計算公式的推導過程,這樣有助于學生猜想,并能更好地聯(lián)系舊知,思維過度自然、流暢,便于學生的思維走向正確的方向,這時教師的引導才是行之有效的。
學生進行數(shù)學探究時,教師應給予充分的思考空間,創(chuàng)設(shè)實踐操作的條件,營造出思考的環(huán)境氛圍。教學“圓柱的體積”時,由于學校教學條件差,沒有更多的學具提供給學生,只是由教師示范演示推導過程:把圓柱的底面分成若干份(例如,分成16等份),然后把圓柱切開,照課本上的圖拼起來,圓柱體就轉(zhuǎn)化成一個近似的長方體;接著教師指導學生悟出這個長方體的長相當于圓柱的哪一部分的長度,寬是圓柱哪一部分的長度,高是圓柱的哪一部分的長度,圓柱的體積怎樣計算的道理,從而推導出圓柱體積的計算公式。學生沒有親身參與操作,就缺乏情感空間感覺的體驗,而且這部分又是小學階段立體圖形的教學難點,學生得不到充分的思考空間,也不利于教師營造思考的環(huán)境,不便于學生思考如何利用已知圖形體積和教學思想去解決這一問題。學生缺乏行為、認知的投入和積極的情感投入,所以,課堂效果差就可想而知了。
例題“練一練”中的題目都比較淺顯,學生還能容易掌握,但遇到多轉(zhuǎn)幾個彎的題目就束手無策了。所以,為了讓學生能熟練地掌握計算圓柱的體積,教師在設(shè)計練習時要多動腦,花心思。
圓柱的體積教學設(shè)計反思篇一
年級組集體備課時會嘆氣。
在走廊里碰頭時會感慨。
嘆氣、感慨地主要原因就是:近期作業(yè)的錯誤率很高(特別是學困生)。
這使我不免停下“匆匆的步伐”凝望著這些作業(yè)叉叉多的孩子。
什么地方出問題了?
一輪本子改下來錯誤有以下幾類。
1、優(yōu)等生:列出一個長長的算式,直接得出錯誤的結(jié)果(看不出是哪一步出錯,反正計算錯)。
4、不知靈活變通,一般來講3.14最好是最后再乘,這樣可以降低計算的復雜程度,減輕計算的強度;但部分學困生勇氣可嘉,不管那一套,列式中3.14在前面就先算;放在后頭就最后算,老實得可愛;當你在講計算技巧的時候可愛的孩子們還在埋頭苦算,結(jié)果錯誤百出。
1、學優(yōu)生:提出要求:不能一步得出結(jié)果,要脫式:關(guān)注做作業(yè)、打草稿的態(tài)度、習慣,養(yǎng)成草稿本清晰、數(shù)字清楚,可以避免匆忙之中抄錯數(shù)字導致整題出錯。
2、中等生、學困生:
(1)重視公式的熟練程度:通過演示、推導、同桌互說、單獨抽問、上黑板默寫等方法幫助夯實基礎(chǔ)。
(3)重點強記:3.14*1=…………………3.14*9=常用計算結(jié)果,達到熟練程度,提高練習時的計算速度和正確率,也可以用于檢驗計算過程中的結(jié)果正確與否。
(4)抓聽講習慣:要求要嚴格,教師針對問題進行分析、講評的時候,應要求所有學生抬頭關(guān)注,集中精力聽講(往往這樣的時候?qū)W困生是不睬你的,要適當?shù)暮八饋碚緜€1分多鐘,點一點他。),有了這個保證,講評的效果就有了,出錯的幾率就就會降低了。再結(jié)合以上措施,效果就會更好。
有了措施,就需要有行動——老師的行動、學生的行動都要跟上,希望一段日子后會有好效果。
也歡迎大家說說自己的好的做法,共同提高第二單元的質(zhì)量。
圓柱的體積教學設(shè)計反思篇二
用已學的圓柱體積知識解決生活中的實際問題,并滲透轉(zhuǎn)化思想。
經(jīng)歷探究不規(guī)則物體體積的轉(zhuǎn)化、測量和計算過程,讓學生在動手操作中初步建立“轉(zhuǎn)化”的數(shù)學思想,體驗“等積變形”的轉(zhuǎn)化過程。
通過實踐,讓學生在合作中建立協(xié)作精神,并增強學生“用數(shù)學”的意識。
教學重點:利用所學知識合理靈活地分析、解決不規(guī)則物體的體積的計算方法。
教學難點:轉(zhuǎn)化前后的溝通。
每組一個礦泉水瓶(課前統(tǒng)一搜集農(nóng)夫山泉礦泉水瓶,裝有適量清水,水高度分別為6、7、8、9厘米),直尺。
問:圓柱的體積怎么計算?體積和容積有什么區(qū)別?
2.揭題:這節(jié)課,我們要根據(jù)這些體積和容積的知識來解決生活中的實際問題。(完整板書:用圓柱的體積解決問題。)。
【設(shè)計意圖】通過復習圓柱的體積計算方法以及體積和容積之間的聯(lián)系和區(qū)別,為學習新知做好知識上的準備。
1.創(chuàng)設(shè)情境,提出問題。
每個小組桌子上有一個沒有裝滿水的礦泉水瓶。
教師:原本這是一瓶裝滿水的礦泉水,已經(jīng)喝了一部分,你能根據(jù)它來提一個數(shù)學問題嗎?(隨機板書)。
預設(shè)1:瓶子還有多少水?(剩下多少水?)。
預設(shè)2:喝了多少水?(也就是瓶子的空氣部分。)。
預設(shè)3:這個瓶子一共能裝多少水?(也就是這個瓶子的容積是多少?)。
2.你覺得你能輕松解決什么問題?
(1)預設(shè)1:瓶子有多少水?(怎么解決?)。
學生:瓶子里剩下的水呈圓柱狀,只要量出這個圓柱的底面直徑和高就能算出它的體積。
教師:需要用到什么工具?(直尺)你想利用直尺得到哪些數(shù)據(jù)?(底面直徑、水的高度)。
小結(jié):知道了底面直徑和水的高度,要解決這個問題的確輕而易舉。請你準備好直尺,或許等會兒有用哦!
(2)預設(shè)2:喝了多少水?
學生:喝掉部分的形狀是不規(guī)則,沒有辦法計算。
教師:當物體形狀不規(guī)則時,我們想求出它的體積可以怎么辦?
教師相機引導:能否將空氣部分變成一個規(guī)則的立體圖形呢?
學生能說出方法更好,不能說出則引導:我們不妨把瓶子倒過來看看,你發(fā)現(xiàn)了什么?
引導學生發(fā)現(xiàn):在瓶子倒置前后,水的體積不變,空氣的體積不變,因此,喝了多少水=倒置后空氣部分的體積,倒置后空氣部分是一個圓柱,要求出它的體積需要哪些數(shù)據(jù)?(倒置后空氣的高度)。
(3)怎么求這個礦泉水瓶的容積?引導學生得出:倒置前水的體積+倒置后空氣的體積=瓶子容積。
【設(shè)計意圖】課本中的例題呈現(xiàn)如下,
例題是直接呈現(xiàn)轉(zhuǎn)化方法的,我是想先屏蔽相關(guān)數(shù)據(jù)信息和方法,通過激發(fā)學生解決問題的內(nèi)在需求,根據(jù)自己的生活學習經(jīng)驗來想辦法解決,才有了對數(shù)學情境的改編,以期通過轉(zhuǎn)化、觀察、對比,讓學生發(fā)現(xiàn)倒置前后兩部分立體圖形之間的相同點,溝通兩部分體積之間的內(nèi)在聯(lián)系,順利地把新知轉(zhuǎn)化為舊知,分散了難點,從而找到解決問題的方法。
3.小組合作,測量計算。
(礦泉水瓶內(nèi)直徑為6cm)。
教師:方法找到了,接下來能否正確求出瓶子的容積就看你們的了!
(1)課件出示:
一個內(nèi)直徑是()的瓶子里,水的高度是(),把瓶蓋擰緊倒置放平,無水部分是圓柱形,高度是()。這個瓶子的容積是多少?(測量時取整厘米數(shù))。
(2)四人小組合作:
a.組長安排好分工:
要量出所需數(shù)據(jù),其他組員要監(jiān)督好測量方法與結(jié)果是否正確,要按要求把題目填完整。
b.組內(nèi)互相說一說:倒置前后哪兩部分的體積不變?
礦泉水瓶的容積=()+()。
c.做好以上準備工作后,利用所得數(shù)據(jù)獨立計算,再組內(nèi)校對結(jié)果是否正確。
【設(shè)計意圖】這一環(huán)節(jié)讓學生大膽動手操作,在實踐中不斷發(fā)現(xiàn)解決問題,在同伴的交流中拓展自己的思維,讓學生在合作中建立協(xié)作精神。
4.交流反饋。
教師巡查,選擇礦泉水瓶中原有水高度分別6、7、8、9厘米的同學板演。
瓶中水高度為6厘米的:
3.14×(6÷2)2×6+3.14×(6÷2)2×13。
=3.14×9×(6+13)。
≈537(毫升)。
瓶中水高度為7厘米的:
3.14×(6÷2)2×7+3.14×(6÷2)2×12。
=3.14×9×(7+12)。
≈537(毫升)。
瓶中水高度為8厘米的:
3.14×(6÷2)2×8+3.14×(6÷2)2×11。
=3.14×9×(8+11)。
≈537(毫升)。
瓶中水高度為9厘米的:
3.14×(6÷2)2×9+3.14×(6÷2)2×10。
=3.14×9×(9+10)。
≈537(毫升)。
教師:出示某品牌礦泉水瓶的標簽,上面寫著凈含量為550毫升,基本符合。
5.解答正確嗎?
教師引導學生回顧反思:剛才我們是怎樣解決問題的?
小結(jié):根據(jù)具體情況選擇合適的轉(zhuǎn)化方法,像這樣不規(guī)則立體圖形的體積可以轉(zhuǎn)化為規(guī)則的立體圖形來計算。
【設(shè)計意圖】通過回顧解決問題的過程,幫助學生把本環(huán)節(jié)的數(shù)學活動經(jīng)驗進行總結(jié),引導學生在后續(xù)的學習中碰到相似的問題也可同樣利用轉(zhuǎn)化的思想來解決。
1.數(shù)學書p27做一做。
(1)學生獨立思考,解決問題。
(2)把自己的想法與同桌說一說。
(3)交流反饋:重點交流如何轉(zhuǎn)化,倒置后哪兩部分體積不變?
求小明喝了多少水實際上是求礦泉水瓶上面無水部分的體積,這部分為不規(guī)則的立體圖形。
將水瓶倒置后不規(guī)則容器轉(zhuǎn)化成了圓柱:該圓柱體積=小明喝了的水。
3.14×(6÷2)2×10=282.6(毫升)。
(1)請學生計算,并反饋訂正。
(2)反饋要點:
整個吊瓶容積=圖像中空氣部分的容積+還剩下液體的體積。
根據(jù)圖象,可以得出在第12分鐘吊瓶有80毫升是空的。
剩下液體的體積=100-2.5×12=70(毫升)。
即整個吊瓶容積=80+70=150(毫升)。
【設(shè)計意圖】從生活中常見的吊瓶問題引出,感受數(shù)學與生活的密切聯(lián)系,能根據(jù)圖像提取解決問題的有效信息,既提升了所學知識,又關(guān)注了學生的思考,培養(yǎng)學生的分析、解決問題能力。
(2)討論方法:
a.重疊:假設(shè)把兩個大小一樣的斜截體拼成一個底面周長為9.42厘米,高為(4+6)厘米的圓柱,這個立體圖形的體積是新圓柱體積的一半。
b.切割:把這個立體圖形分為兩部分,下面是一個底面周長為9.42厘米,高為4厘米的圓柱體,上面是一個高為(6-4)厘米的圓柱斜截體,且體積是高為(6-4)厘米的圓柱體積的一半。
(3)用自己認可的方法計算,并進行反饋。
解法一:3.14×(9.42÷3.14÷2)2×10÷2=35.325(立方厘米)。
解法二:3.14×(9.42÷3.14÷2)2×4+3.14×(9.42÷3.14÷2)2×2÷2=35.325(立方厘米)。
(4)反饋小結(jié):可以有不同的轉(zhuǎn)化方法來解決問題。
【設(shè)計意圖】不滿足于一種方法的轉(zhuǎn)化,展示多種方法,開拓學生的思維。
教師:回憶一下,今天這節(jié)課有什么收獲?
教師和學生共同小結(jié):求不規(guī)則的立體圖形的體積可以將它轉(zhuǎn)化成為規(guī)則的立體圖形,這節(jié)課我們主要是將不規(guī)則的立體圖形轉(zhuǎn)化成為圓柱,用圓柱的體積計算方法來解決問題。
在解決問題時,主要要弄清楚轉(zhuǎn)化前后兩部分之間的關(guān)系。
【設(shè)計意圖】通過小結(jié),讓學生自主地對回顧本課所學知識進行梳理總結(jié),通過歸納與提煉,讓學生明確轉(zhuǎn)化思想在數(shù)學學習中的重要性。
圓柱的體積教學設(shè)計反思篇三
我采用多媒體的直觀教具相結(jié)合的手段,在圓柱體積公式推導過程中指導學生充分利用手中的學具、教具,學生在興趣盎然中經(jīng)歷了自主探究、獨立思考、分析整理、合作交流、總結(jié)歸納等過程,發(fā)現(xiàn)了教學問題的存在,經(jīng)歷了知識產(chǎn)生的過程,理解和掌握了數(shù)學基本知識,從而促進了學生的思維發(fā)展。這樣學生親身參與操作,有了空間感覺的體驗,也有了充分的思考空間。這樣設(shè)計我覺得能突破難點,課堂效果很好。
在課的設(shè)計上以學生為主、發(fā)揮學生的主體作用,要充分展示學生的思維過程,在學生動手實踐、交流討論和思考的時間上教師應合理把握。
圓柱的體積教學設(shè)計反思篇四
在進行圓柱的體積的導入時,課本上是先讓學生回憶“長方體、正方體的體積都可以用它們的底面積乘高來計算”,那么再接著馬上提問:“圓柱的體積怎樣計算呢?”讓學生們猜一猜,《圓柱體積》教學反思。
猜想計算方法固然有好處,但要讓學生馬上做實驗,理解圓柱體積計算公式的推導過程,我覺得這樣教學引入,學生的思維跳躍得太快,我認為,不妨在回憶了長方體、正方體體積計算方法之后,接著復習一下圓面積計算公式的推導過程,這樣有助于學生猜想,并能更好地聯(lián)系舊知,思維過度自然、流暢,便于學生的思維走向正確的方向,這時教師的引導才是行之有效的。
二、新課時,要實現(xiàn)人人參與,主動學習。
根據(jù)課標要求:學生進行數(shù)學探究時,教師應給予充分的思考空間,創(chuàng)設(shè)實踐操作的條件,營造出思考的環(huán)境氛圍。教學“圓柱的體積”時,示范演示推導過程:把圓柱的底面分成若干份(例如,分成16等份,還可以再多一些),然后把圓柱切開,照課本上的圖拼起來,圓柱體就轉(zhuǎn)化成一個近似的長方體;接著教師指導學生悟出這個長方體的長相當于圓柱的哪一部分的長度,寬是圓柱哪一部分的長度,高是圓柱的哪一部分的長度,圓柱的體積怎樣計算的道理,從而推導出圓柱體積的計算公式。學生如果沒有親身參與操作,就缺乏情感空間感覺的體驗,而且這部分又是小學階段立體圖形的教學難點,學生得不到充分的思考空間,也不利于教師營造思考的環(huán)境,不便于學生思考如何利用已知圖形體積和教學思想去解決這一問題。學生缺乏行為、認知的投入和積極的情感投入,所以,課堂效果差就可想而知了。
三、練習時,要形式多樣,層層遞進。
例題“練一練”中的題目都比較淺顯,學生還能容易掌握,但遇到多轉(zhuǎn)幾個彎的題目就束手無策了。所以,為了讓學生能熟練地掌握計算圓柱的體積,教師在設(shè)計練習時要多動腦,花心思去考慮怎樣才能讓學生用最短的時間完成不同類型的題目。在鞏固練習中,只要從這五種類型去考慮,做到面面俱到,逐層深入,由易到難,學生才能真正掌握好計算圓柱體積的方法。練習方式可以是填空、選擇、判斷、看圖計算、應用題等。達到掌握。
圓柱的體積教學設(shè)計反思篇五
在教學圓柱的體積時,我采用新的教學理念,讓學生自己動手實踐、自主探索與合作交流,在實踐中體驗,從而獲得知識。通過這節(jié)課的教學,我覺得成功之處有以下幾個方面:
圓柱的體積的導入,在回憶了長方體、正方體體積計算方法,并強調(diào)長方體、正方體的體積都可以用底面積乘高,接著復習一下圓面積計算公式的推導過程,這樣有助于學生猜想:“圓柱體是否可以轉(zhuǎn)化成我們學過的圖形呢?”激發(fā)學生好奇心,獨立思考問題,探索問題的愿望。這樣聯(lián)系舊知,導入新知,思維過度自然,易接受新知。
學生在探究新知時,教師要給予充分的思考空間,創(chuàng)設(shè)實踐操作的條件,營造出思考的環(huán)境氛圍。教學“圓柱的體積”時,學生親身參與操作,先用小刀把一根火腿腸切成一個圓柱體把圓柱的底面分成若干份(例如,分成12等份),然后把圓柱切開,再拼起來,()圓柱體就轉(zhuǎn)化成一個近似的長方體。找一找:這個長方體的長相當于圓柱的什么,寬是圓柱的什么,高是圓柱的什么。圓柱的體積就是長方體的體積,從而推導出圓柱體積的計算公式。
為了直觀、形象,讓學生觀看課件:圓轉(zhuǎn)化成近似長方形的過程,使學生很容易猜想出圓柱體也可以轉(zhuǎn)化成近似的長方體來得出體積公式。在推導圓柱體積公式的過程中,要求學生想象:“如果把圓柱的底面平均分成32份、64份……切開后拼成的物體會有什么變化?”學生雖然能說出“拼成的物體越來越接近長方體?!钡牵降灼闯傻膱D形怎樣更接近長方體?演示動畫后,學生不僅對這個切拼過程一目了然,同時又加深理解了圓柱體轉(zhuǎn)化成近似長方體的轉(zhuǎn)化方法。
為了培養(yǎng)學生解題的靈活性,進行分層練習,拓展知識,發(fā)散思維。如:已知圓柱底面積和高,怎樣求圓柱體積;已知圓柱底面半徑和高,怎樣求圓柱體積;已知圓柱底面直徑和高,怎樣求圓柱體積;已知圓柱底面周長和高,怎樣求圓柱體積;已知圓柱側(cè)面積和高,怎樣求圓柱體積;已知圓柱底面積和體積,怎樣求高;已知圓柱體積和高,怎樣求底面積等。
圓柱的體積教學設(shè)計反思篇六
2、提問:“能用一句話說說什么是圓柱的體積嗎?”
(學生互相討論后匯報,教師設(shè)疑)。
二、自主探究、
1、比較大小、探究圓柱的體積與哪些要素有關(guān)。
(1)先出示了兩個大小不等的圓柱體讓學生判斷哪個體積大?
(2)提問:“要比較兩個圓柱體的體積你有什么好辦法?”學生想到將圓柱體放進水中,比較哪個水面升得高。
(3)讓學生運用這樣的方法自己比較底等高不等和高等底不等的兩組圓柱的體積,并將實驗結(jié)果填入實驗報告1中。(課件出示)。
(4)學生通過動手操作匯報結(jié)論:當?shù)椎葧r,圓柱越高體積越大;當高等時,圓柱底面越大體積越大。即圓柱的體積的大小與它的底面積和高有關(guān)。
2、大膽猜想,感知體積公式,確定探究目標。
(1)再次設(shè)疑:如果要準確的知道哪個圓柱的體積大,大多少,你有什么好辦法?學生想如何計算圓柱的體積。
(2)引導學生回憶圓的面積公式和長方體的體積公式的推導過程。
(3)讓學生思考:怎樣計算圓柱的體積呢,依據(jù)學過的知識,你可以做出怎樣的假設(shè)?
(4)學生小組討論交流并匯報:圓柱平均分成若干小扇形體后應該也能夠轉(zhuǎn)化成一個近似長方體;圓柱的體積可能也是用底面積乘高來計算。
(5)讓學生依據(jù)假設(shè)結(jié)論分組測量圓柱c和圓柱d的有關(guān)數(shù)據(jù),用計算器計算體積,并填入實驗報告2中。(課件出示)。
4、確定方法,探究實驗,驗證體積公式。
(1)首先要求學生利用實驗工具,自主商討確定研究方法。
(2)學生通過討論交流確定了兩種驗證方案。
方案一:將圓柱c放入水中,驗證圓柱c的體積。
方案二:將學具中已分成若干分扇形塊的圓柱d拆拼成新的形體,計算新形體的體積,驗證圓柱d的體積。
(3)學生按照自己所設(shè)想的方案動手實驗,并記錄有關(guān)數(shù)據(jù),填入實驗報告2中。
(5)學生匯報:實驗的結(jié)果與猜想的結(jié)果基本相同。
(6)教師用課件演示將圓柱體轉(zhuǎn)化成長方體的過程,向?qū)W生明確圓柱的體積確實可以像計算長方體體積那樣,用底面積乘以高。
(7)小結(jié):
要想求出一個圓柱的體積,需要知道什么條件?
(8)學生自學第8頁例4上面的一段話:用字母表示公式。
學生反饋自學情況:
v=sh。
三、鞏固發(fā)展。
1、課件出示例4,學生獨立完成。
指名說說這樣列式的依據(jù)是什么。
2、鞏固反饋。
3、完成第9頁的“試一試”和練一練”中的兩道題。
(“練一練”只列式,不計算)。
集體訂正,說一說圓柱體的體積還可以怎樣算?
5、拓展練習。
(1)一個長方形的紙片長是6分米,寬4分米。用它分別圍成兩個圓柱體,a是用4分米做底高6分米,b是用6分米做底高是4分米它們的體積大小一樣嗎?請你計算說明理由。(得數(shù)保留兩位小數(shù))。
四、全課小結(jié):
談談這節(jié)課你有哪些收獲。
圓柱的體積教學設(shè)計反思篇七
今天第一節(jié)課荊校長和建英聽了我講的《圓柱的體積》,提出了幾點我應該注意和改進的地方。
一是,要注重課前的預習,圓柱的體積一課復習舊知環(huán)節(jié),需要學生回顧什么是體積,長方體正方體體積公式,回顧轉(zhuǎn)化的方法推導圓面積計算公式,需要回顧的舊知較多,所以可以課前設(shè)計成幾個問題讓學生預習,就可以避免課上學生由于對知識的遺忘,而浪費時間,影響課堂的高效。
二是,猜想圓柱的體積可能與什么有關(guān)這個環(huán)節(jié),由于注重讓學生猜想,感受,體驗,并通過媒體演示驗證猜想的正確性,有些浪費時間。
三是,推導體積公式環(huán)節(jié),我讓學生利用拆好的圓柱學具,兩人合作,圍繞三個問題進行探究“圓柱可以轉(zhuǎn)化為我們學過的哪個立體圖形,轉(zhuǎn)化后的圖形與圓柱之間有怎樣的.關(guān)系,利用這樣的關(guān)系可以推導出怎樣的公式”,學生合作的成果需要通過語言表達出來,所以之后的展示匯報環(huán)節(jié),我叫了三個學生上臺按照提示的三個問題完整的表述,最后有全體齊說,沒有讓學生再互相說一說,在說中再去感受推導的過程,我覺得這也是我欠缺的地方。
四是,練習反饋環(huán)節(jié),我依據(jù)學生推導出的四個公式,先讓學生看著這些公式說一說,求圓柱的體積需要知道什么條件,學生說出了四種情況:知道了半徑和高求體積;知道了周長和高求體積;知道了底面積和高求體積;知道了直徑和高求體積。我順勢出了四道這樣的練習題讓學生在本上完成并集體訂正,感覺練習的量不夠。
通過這節(jié)課,從荊校長和建英的評課中,我體會到要想提高課堂效率,首先,抓好課前預習,其次,注重用多種方式讓學生多說而且要說透,最后,注意各環(huán)節(jié)時間分配要合理,做到心中有數(shù)。還有就是要加大練習量,關(guān)注到每一個學生,對學生學習效果掌握程度做到了如指掌。
圓柱的體積教學設(shè)計反思篇八
1、知識與技能:理解教材中形體轉(zhuǎn)化的過程,掌握圓柱體積的計算公式,會用公式計算圓柱的體積,解決有關(guān)簡單的實際問題。拓展教材內(nèi)容,初步了解直柱體的相關(guān)知識。
2、過程與方法:利用教材空間,為學生搭建思維平臺。讓學生經(jīng)歷觀察、想象、思考、交流等教學活動過程,理解圓柱體積計算公式的推導過程,提高學生思維能力,同時體驗轉(zhuǎn)化和極限的思想。
3、情感與態(tài)度:挖掘教材內(nèi)涵,把圖形的變換過程,轉(zhuǎn)變?yōu)閷W生思維能力的培養(yǎng)、提高的過程,并進一步發(fā)展其空間觀念,領(lǐng)悟?qū)W習數(shù)學的方法,激發(fā)學生學習興趣,滲透事物是普遍聯(lián)系的唯物辯證思想。
理解圓柱體積計算公式的推導過程,運用圓柱體積計算公式準確解決實際問題。
正確理解圓柱體積計算公式的推導過程。
一、情境導入:
老師手拿一個圓柱形橡皮泥(大小適宜)。
1、師:通過前面的學習,關(guān)于圓柱你已經(jīng)知道什么?還想了解它的哪些知識?
生1:(已學知識)。
生2:圓柱是一種立體圖形,那么它的體積怎么計算?
2、師:聯(lián)系已經(jīng)掌握的有關(guān)立體圖形的知識,你能想辦法求出這個圓柱體的體積嗎?
生2:將這個圓柱放入一個盛有水的長方體容器中,量出上升了的水的長、寬、高,就可以求出它的體積。
生3:圓柱體在水中必須完全浸沒,而且水還不能溢出。
【學情分析:學生在五年級學習長方體、正方體有關(guān)知識的基礎(chǔ)上,很容易想到運用“排水法”來解決問題,所以這一環(huán)節(jié)也充分給予學生展示自我的機會,培養(yǎng)思維中的自信心。】教師在學生中找出小助手,幫助測量有關(guān)數(shù)據(jù),全體同學計算水的體積,并作記載。
師:運用轉(zhuǎn)化思想,聯(lián)系已學知識,解決新生問題,同學們真了不起!
4、師:如果要求壓路機前輪的體積或是求樓房中柱子的體積,還能不能用這種方法計算嗎?(不能)那么求圓柱的體積時是否也有一個簡單、易算的體積計算公式呢?今天我們就一起來研究圓柱體積的計算方法。
二、新舊過度:
教師引導學生觀察圓柱形實物。
1、
師:發(fā)揮你的想象,哪些平面圖形可以演變?yōu)閳A柱體?生1:以長方形的一條長為軸,把長方形旋轉(zhuǎn)一周,就形成一個圓柱體。
(教師演示:大小不同的長方形旋轉(zhuǎn)形成圓柱體。)。
生2:把一個圓形上下平移,移動過的軌跡就是圓柱體。(課件演示:大小不同的圓形上下垂直平移不同高度形成圓柱體。)。
師:通過剛才的演示過程你覺得圓柱的體積大小與什么有關(guān)?(圓柱的底面積和高)。
學生口述,同時課件演示圓形轉(zhuǎn)化為近似長方形的過程。
三、自主探究。
1、學生手拿圓柱實物,仔細觀察,獨立思考。
2、組織學生小組討論,把個人的想法在小組中交流,形成統(tǒng)一意見。
強調(diào):在討論過程中,教師參與其中,傾聽學生想法,調(diào)整匯報次序,同時提醒學生觀察手中圓柱實物。
3、匯報交流,統(tǒng)一意見。
生1:把一個圓剪拼成一個近似的長方形,然后把圓形和近似長方形同時向上平移相同的高度,這時他們的軌跡一個是圓柱體,一個是近似長方體,而且它們的體積相等。
(師:一個圓柱和一個長方體只要底面積和高分別相等,它們的體積就相等嗎?一會兒我們來解決這個問題。)。
生2:把圓柱的底面分成許多相等的扇形,再沿這些分割線把圓柱縱切開來,從而剪拼成一個近似的長方體。
(師:為什么是近似的長方體?———滲透數(shù)學極限思想)。
4、課件演示:
師:仔細觀察下面這組課件,和你想象的是否一樣?
演示兩次,第一次把圓柱平均分成16份,再剪拼成一個近似的長方形;第二次把圓柱平均分成32份,再剪拼成一個近似的長方形。
生:長方體的體積相當于圓柱的體積,長方體的底面積相當于圓柱的底面積,而且它們的高相等。
因為:長方體的體積=底面積×高。
四、實踐應用:
強調(diào)單位:90×20=1800(立方分米)。
2、再次拿出圓柱體橡皮泥,問:如果要用圓柱體積計算公式計算它的體積,你需要測量哪些數(shù)據(jù)?(底面直徑、高)。
生1:可能測量有誤差,并且還要保留。
生2:測量水的長、寬時,容器的厚度忽略不計,也能產(chǎn)生誤差。教師說明:每一個科學結(jié)論都必須經(jīng)過反復的實驗、計算,才能得到正確的結(jié)論,我們在學習上就要有這種不怕吃苦、勇于探索的精神。
(教師直接給出玻璃杯的底面直徑和高)。
六、全課小結(jié):
師:通過本節(jié)課的學習,你有什么收獲?
啟發(fā)。
一、充實教材,為提高學生思維能力搭建平臺。
課堂教學中讓學生在教師的啟發(fā)指導下,獨立思考、積極主動的去探究知識是怎樣形成的,才能真正使學生成為學習的主體。在教材中已經(jīng)提供了圖形轉(zhuǎn)化的過程,那么在沒有學具讓學生進行動手操作、親自感悟的情況下,怎樣讓學生的思維真正參與到知識的形成過程呢?作為教師,必須充實教材。課堂中讓學生動手測量計算所必需的數(shù)據(jù),自己感悟?qū)W習圓柱體積計算公式的必要性,合作探究圓柱體的轉(zhuǎn)化方法和過程。所有這些環(huán)節(jié)的設(shè)計,都在潛移默化中引導學生主動思考,主動參與,在思考與參與中提高了學生的思維能力。
二、借助教材,為提高學生思維能力尋找支點。
數(shù)學知識具有一定的結(jié)構(gòu),知識間存在密切的聯(lián)系,教學時要找出知識間的內(nèi)在聯(lián)系,幫助學生建立一個較完整的知識系統(tǒng)。教材中設(shè)計了引問“圓可以轉(zhuǎn)化成長方形計算面積,圓柱可以轉(zhuǎn)化成長方形計算體積嗎?”但我認為“面體過渡”在幾何領(lǐng)域中本身就是一個難點,而“面面互化”遷移到“體體互化”,就難上加難,所以設(shè)計中用較長時間溝通新舊知識間的聯(lián)系:排水法的應用,平面圖形演變?yōu)榱Ⅲw圖形的過程,圓面積的推導過程。在復習當中,學生的綜合運用能力得到提高,更重要的是為下一步學生的思維活動確立支點,進而提高學生的思維能力。
思考。
一、演示、觀察能否代替操作?
教材中提供了教具演示,但在本節(jié)教學前,始終沒有找到學生使用的操作學具,而自己也嘗試用土豆、橡皮泥等制作學具,都因為難度太大(粘接處)而告失敗,在無奈之余,設(shè)計了“獨立思考———小組探究———課件演示———教具操作”四個環(huán)節(jié)來突破本節(jié)難點。就學生理解、接受方面來說效果不錯。但沒有讓學生親自操作,總感覺影響學生思維發(fā)展。類似教學如:圓錐高的認識。
二、研究中的失誤會不會造成學生認知的“失誤”?
課堂中為求真實,進行了兩次實際測量(第一次測長方體中水的長寬高;第二次測圓柱形橡皮泥的底面直徑和高)。兩次計算結(jié)果的對比,使學生思維與課堂結(jié)構(gòu)都體現(xiàn)完整性。但由于種種誤差,計算結(jié)果很可能不會相等,這就可能會讓學生對結(jié)論產(chǎn)生懷疑(盡管教師已經(jīng)說明),那么是否有必要讓學生經(jīng)歷一個“失誤”的過程呢?類似教學如:圓周率的計算。
圓柱的體積教學設(shè)計反思篇九
掌握圓柱的體積計算公式,能夠正確計算圓柱的體積。
【過程與方法】。
通過觀察、類比、分析的過程,提高分析問題、解決問題的能力,發(fā)展空間觀念。
【情感態(tài)度價值觀】。
感受數(shù)學與生活的聯(lián)系,激發(fā)學習興趣,提高學習數(shù)學的自信心。
【教學重點】。
【教學難點】。
(一)引入新課。
提問:長方體和正方體的體積公式是什么?
(正方體)體積=底面積×高。今天我們再來研究另一個熟悉的幾何圖形,圓柱的體積公式。從而引出本節(jié)課題《圓柱的體積》。
(二)探索新知。
在大屏幕出示底面積和高都相等的長方體、正方體和圓柱。
提問:長方體和正方體的體積相等嗎?
預設(shè):根據(jù)長方體(正方體)體積=底面積×高,所以長方體和正方體體積相等。
預設(shè):圓柱的體積和底面積、高有關(guān),圓柱的體積公式=底面積×高。
預設(shè):可以把圓柱轉(zhuǎn)換成長方體。
預設(shè):學生分一分,拼一拼,組合成近似長方體的圖形。此時教師應借助多媒體設(shè)備展示把圓柱等份分成32份,64份甚至更多份的情境,隨著等份分割的份數(shù)越多,拼成的圖形就越接近長方體。
組織學生進行小組討論:觀察拼成的長方體和原來的圓柱具有怎樣的關(guān)系?5分鐘后請小組代表進行回答。
預設(shè):長方體的底面積、高和體積分別等于原來圓柱的底面積、高和體積。
提問:圓柱的體積公式是什么?
用大寫字母v表示圓柱的體積,s表示底面積,h表示圓柱的高,用字母表示圓柱的體積公式。
預設(shè):v=sh。
教師強調(diào)字母v、s是大寫,h是小寫。
追問:回顧探究圓柱體積公式的過程,有哪些心得體會?
預設(shè)1:可以用長方體體積公式推導出圓柱體體積公式;
預設(shè)2:把圓柱轉(zhuǎn)化成長方體,與探索圓面積的方法類似;
預設(shè)3:計算長方體、正方體、圓柱的體積都可以用底面積乘高。
(三)課堂練習。
試一試。
一個圓柱形零件,底面半徑是5厘米,高是8厘米。這個零件的體積是多少立方厘米?
(四)小結(jié)作業(yè)。
提問:通過本節(jié)課的學習有什么收獲?
課后作業(yè):找找生活當中的圓柱物體,量一量底面積和高,算一算物體體積。
圓柱的體積教學設(shè)計反思篇十
1、結(jié)合具體情境,讓學生探索并掌握圓柱體積的計算方法,并能運用計算公式解決簡單的實際問題。
2、讓學生經(jīng)歷觀察、實驗、猜想、證明等數(shù)學活動過程,發(fā)展合情推理能力和初步的演繹推理能力,滲透數(shù)學思想,體驗數(shù)學研究的方法。
3、通過圓柱體積計算公式的推導、運用的過程,體驗數(shù)學問題的探索性和挑戰(zhàn)性,感受數(shù)學思考過程的條理性和數(shù)學結(jié)論的確定性,獲得成功的喜悅。
掌握和運用圓柱體積計算公式。
一、情景引入。
2、提問:“能用一句話說說什么是圓柱的體積嗎?”
(設(shè)計意圖:在這個環(huán)節(jié)設(shè)計觀察活動,意圖是讓學生通過觀察自主得出圓柱體積的定義,進一步加深對體積概念的理解,并為下面的探究活動提供研究方法。)。
二、自主探究、
1、比較大小、探究圓柱的體積與哪些要素有關(guān)。
(1)、先出示了兩個大小不等的圓柱體讓學生判斷哪個體積大?
(2)、提問:“要比較兩個圓柱體的體積你有什么好辦法?”學生想到將圓柱體放進水中,比較哪個水面升得高。
(3)、讓學生運用這樣的方法自己比較底等高不等和高等底不等的兩組圓柱的體積.
(4)、學生通過動手操作匯報結(jié)論:當?shù)椎葧r,圓柱越高體積越大;當高等時,圓柱底面越大體積越大。即圓柱的體積的大小與它的底面積和高有關(guān)。
(設(shè)計意圖:本環(huán)節(jié)教學讓學生根據(jù)已有的知識解決簡單的問題,通過探究活動,引導學生找出決定圓柱體積的兩個因素,為學習新知識作鋪墊,同時也發(fā)展了學生的抽象概括能力。)。
2、大膽猜想,感知體積公式,確定探究目標。
(1)、再次設(shè)疑:如果要準確的知道哪個圓柱的體積大,大多少,你有什么好辦法?學生想如何計算圓柱的體積。
(2)、引導學生回憶圓的面積公式和長方體的體積公式的推導過程。
(3)、讓學生思考:怎樣計算圓柱的體積呢,依據(jù)學過的知識,你可以做出怎樣的假設(shè)?
(4)、學生小組討論交流并匯報:圓柱平均分成若干小扇形體后應該也能夠轉(zhuǎn)化成一個近似長方體;圓柱的體積可能也是用底面積乘高來計算。
(設(shè)計意圖:通過設(shè)疑使學生認識到學習圓柱體積公式的必要性,激發(fā)學生的探究興趣。接著通過設(shè)計猜想的過程,充分運用學生已有的知識經(jīng)驗,讓學生回憶了學習長方體體積時的實踐方法和將圓形轉(zhuǎn)化成長方形的過程,學生在如此豐富的知識經(jīng)驗基礎(chǔ)上就做到了心中有數(shù),猜想的膽量就更大,假想的合理性就更強。)。
4、確定方法,探究實驗,推導公式。
(1)、思考你發(fā)現(xiàn)了什么?
(5)、學生匯報:實驗的結(jié)果與猜想的結(jié)果基本相同。
(6)、教師用課件演示將圓柱體轉(zhuǎn)化成長方體的過程,向?qū)W生明確圓柱的體積確實可以像計算長方體體積那樣,用底面積乘以高。(課件出示)。
(7)、小結(jié):要想求出一個圓柱的體積,需要知道什么條件?
(8)、學生自學第17頁例4上面的一段話:用字母表示公式。
圓柱的體積教學設(shè)計反思篇十一
《圓錐的體積》一課的教學,是在掌握了圓錐的認識和圓柱的體積的基礎(chǔ)上進行的。多年的教學,讓我學習和累計了很多的教學經(jīng)驗。教學時我先故事導入激發(fā)學生的學習興趣,再讓學生大膽的猜想圓錐的體積公式,然后通過實驗操作來發(fā)現(xiàn)圓錐與等底等高的圓柱之間的關(guān)系,從而得出圓錐的體積等于和它等底等高的圓柱體積的三分之一,并能運用這個關(guān)系計算圓錐的體積,讓學生從感性認識上升到理性認識。
新課一開始,我就利用教師出示一筒米,師:將這筒米倒在桌上,會變成什么形狀情境導入,教師再演示削鉛筆:把一支圓柱形鉛筆的筆頭刨成圓錐形,讓學生觀察,猜測圓錐的體積和什么有關(guān),由于課件很形象直觀,學生很快聯(lián)系到了圓柱的體積,而且很容易想到應該是幾分之幾的關(guān)系。在猜想中學生的學習興趣高漲,更明確了學習的目標。教師從展示實物圖形到空間圖形,采用對比的方法,不斷加深學生對形體的認識。然后讓學生動手實驗,讓孩子親歷教學的驗證過程,從實驗中得出結(jié)論:等底等高的圓錐體體積是圓柱體體積的三分之一,從而推出圓錐的體積公式。這樣,就有一種水到渠成的感覺。對圓錐的體積建立了鮮明的印象之后,就應用公式解決實際的生活問題,起到鞏固深化知識點的作用。
1、情感的發(fā)展。
小學數(shù)學教學中的情感發(fā)展主要包括學生對數(shù)學、數(shù)學學習活動的興趣;自信心和意志力,學習數(shù)學的態(tài)度與學習習慣。本節(jié)課的教學,擺脫了傳統(tǒng)“灌”的教學,從引導學生發(fā)現(xiàn)問題、探索問題,學生在發(fā)現(xiàn)中激起興趣,從探索中尋找快樂,然后又應用知識解決問題。學生經(jīng)歷了一個探索性的學習過程,不知不覺地掌握了知識,發(fā)展了能力,增進了對數(shù)學的情感。學習變成了一個賞心悅目的活動。
2、思想的發(fā)展。
小學數(shù)學教材中,含有大量思想教育因素,是對學生進行教育的良好素材。教師在教學數(shù)學知識的同時,要注意發(fā)揮教材本身思想教育功能,不失時機地、潛移默化地滲透思想教育活動是兒童認識數(shù)學的重要方式。新課改提倡學生的自主活動,把數(shù)學學習的主動權(quán)交給學生,鼓勵每個學生積極參與教學活動,在教學中創(chuàng)設(shè)豐富多彩的活動情境,讓學生親自實踐,大膽探索。
練習設(shè)計從基本題入手,過渡到情境題,發(fā)展到綜合解決實際問題,這個過程中訓練了學生的解題能力,培養(yǎng)了運用所學知識解決實際問題的能力。
在教學后感覺到遺憾的是,由于教具的關(guān)系學生參與以小組合作學習的面很廣但小組合作分工不太合理。使每個學生不是全身心投入到探究實驗中去,這樣少部份學生的積極性調(diào)動不高,有點遺憾進行學習,沒有最大限度的發(fā)揮每個學生的自主學習的能力,這樣的學習雖然是培養(yǎng)了學生的能力。但合作意識還需加強。小組學生的試驗完成默契還需加強。
圓柱的體積教學設(shè)計反思篇十二
1、運用遷移規(guī)律,引導學生借助圓面積計算公式的推導方法來推導圓柱的體積計算公式,并理解其推導過程。
2、會用圓柱的體積計算公式計算圓柱形物體的體積或容積。
3、引導學生逐步學會轉(zhuǎn)化的數(shù)學思想和數(shù)學方法,培養(yǎng)學生解決實際問題的能力。
4、借助遠程教育的課件資源演示,培養(yǎng)學生抽象、概括的思維能力。
圓柱體體積計算公式的推導過程。
《數(shù)學課程標準》指出:“有效的數(shù)學學習活動不能單純地依賴模仿與記憶,動手實踐、自主探索與合作交流是學生學習數(shù)學的重要方式?!奔匆笪覀冊诮虒W中,要讓學生通過自主的知識建構(gòu)活動,學生的潛能得以開發(fā),情感、態(tài)度、價值觀得以培養(yǎng),從而提高學生的數(shù)學素養(yǎng)。因此根據(jù)本節(jié)課內(nèi)容的特點,這節(jié)課的教學將通過對圓柱體積知識的探究,重點培養(yǎng)學生探究數(shù)學知識的能力和方法。為了把“一切為了學生的發(fā)展”這一新的教學理念融入到了課堂教學之中。在課堂教學中將以學生的活動為主,讓學生通過親身體驗、實際操作來找出數(shù)學知識之間的內(nèi)在聯(lián)系。在學生學習過程中,充分運用了遠程教育資源中動畫、聲音、視頻文件,并進行了有效地整合。本節(jié)課將使用以下策略:
1、利用遷移規(guī)律引入新課,借助遠程資源為學生創(chuàng)設(shè)良好的學習情境。
2、以合作探究為主要的學習方式,充分發(fā)揮學生的自主性,體現(xiàn)學生的主體地位。
3、練習多樣化,層次化。
4、引導學生把知識轉(zhuǎn)化成相應的技能,從而提高靈活運用的能力,培養(yǎng)學生的綜合素質(zhì)。
一、回憶舊知,實現(xiàn)遷移。
1、學習圓的面積時,我們是怎樣推導出圓的面積計算公式的?利用多媒體課件動態(tài)演示把圓等分切割,拼成一個近似的長方形,找出圓與所拼成的長方形之間的關(guān)系,進而推導出圓面積計算公式的過程。
a.半徑5厘米。
b.直徑6分米。
二、指名說說自己想法。
教師引入:這節(jié)課我們就來研究如何將圓柱轉(zhuǎn)化成我們已經(jīng)學過的圖形來求出它的體積。(板書課題:圓柱的體積)。
2、生討論,交流。
三、驗證。
教師演示:。
(2)將圓柱的`底面、長方體的底面閃爍后移出來。提問:你學過將圓變成長方形嗎?
(3)再次出示圓柱形物體,動畫演示圓柱拼成近似長方體。讓學生取出圓柱體學具拼成近似長方體。
四、探索圓柱與所拼成的近似長方體之間的關(guān)系。
1、學生動手進行實驗。請每個小組拿出學具,并研究轉(zhuǎn)化后的長方體和原來圓柱體積、底面積、高之間的關(guān)系。
2、學生利用學具獨立操作(教師巡視、指導操作有困難的學生),思考并討論。
3、通過剛才的實驗你發(fā)現(xiàn)了什么?
4、學生匯報交流。
五、分析關(guān)系,總結(jié)公式引導學生發(fā)現(xiàn)并說出:
圓柱體轉(zhuǎn)化成長方體后,雖然形狀變了,但是長方體的體積和原來圓柱的體積相等,長方體的底面積等于圓柱的底面積,長方體的高等于圓柱的高??偨Y(jié)公式。
長方體的體積=底面積×高。
v=sh。
六、拓展訓練。
七、課堂總結(jié)。
長方體的體積=底面積×高。
v=sh。
[教學反思]。
1、這節(jié)課是通過觀察、猜想、操作驗證、鞏固、應用這幾個環(huán)節(jié)來完成的。學生在最佳的情景中通過實踐、探索、發(fā)現(xiàn),得到了“活”的知識,學到有價值的數(shù)學。
2、操作驗證是本節(jié)課的關(guān)鍵,為體現(xiàn)活動教學中學生“主動探索”的特點,我從問題入手,組織學生圍繞觀察猜想后展開驗證性的操作活動。學生以活動小組為單位,思維活躍,積極探索,學習能力、抽象概括能力和邏輯思維能力得到了提高。
3、充分利用媒體資源,化解難點,提高課堂效果;注重習題多樣化、層次化,拓展學生思維。
圓柱的體積教學設(shè)計反思篇十三
學情分析:
根據(jù)六年級的教學情況來看,班中絕大部分同學都能跟上現(xiàn)有的進度,通過本節(jié)課教學要使靈活運用圓柱體積的計算方法解決生活中一些簡單的問題,通過想象、操作等活動,理解圓柱體體積公式的推導過程,掌握計算公式;會運用公式計算圓柱的體積。
教學目標:
1.通過切割圓柱體,拼成近似的長方體,從而推導出圓柱的體積公式這一教學過程,向?qū)W生滲透轉(zhuǎn)化思想。
2.通過圓柱體體積公式的推導,培養(yǎng)學生的分析推理能力。
3.理解圓柱體體積公式的推導過程,掌握計算公式;會運用公式計算圓柱的體積。
教學重點:
教學難點:
教學用具:
教學過程:
一、復習引新。
1.求下面各圓的面積(回答)。
(1)r=1厘米;(2)d=4分米;(3)c=6.28米。
要求說出解題思路。
2.提問:什么叫體積?常用的體積單位有哪些?
3.已知長方體的底面積s和高h,怎樣計算長方體的體積?(板書:長方體的體積=底面積×高)。
二、探索新知。
1、根據(jù)學過的體積概念,說說什么是圓柱的體積。(板書課題)。
2、公式推導。(有條件的可分小組進行)。
(1)請同學指出圓柱體的底面積和高。
(2)回顧圓面積公式的推導。(切拼轉(zhuǎn)化)。
3、回顧了圓的面積公式推導,你有什么啟發(fā)?
生答:把圓柱轉(zhuǎn)化成長方體計算體積。
4、動手操作。
請2位同學上臺用教具來演示,邊演示邊講解。
把圓柱的底面平均分成16份,切開后把它拼成一個近似地長方體。
多請幾組同學上臺講解,完善語言。
提問:為什么用“近似”這個詞?
5、教師演示。
把圓柱拼成了一個近似的長方體。
6、如果把圓柱的底面平均分成32份、64份……切開后拼成的物體會有什么變化?
生答:拼成的物體越來越接近長方體。
追問:為什么?
生答:平均分的份數(shù)越多,每份就越小,弧就越短,拼起來的長方體的長就越近似于一條線段,這樣整個形體就越近似于長方體。
7、剛才我們通過動手操作,把圓柱切拼成一個近似的長方體。
師:拼成的長方體和原來的圓柱有什么聯(lián)系?請與同學們進行交流?
出示討論題。
(1)、拼成的長方體的底面積與原來圓柱的底面積有什么關(guān)系?為什么是相等的?
(2)、拼成的長方體的高與原來圓柱的高有什么關(guān)系?為什么是相等的?
(3)、拼成的長方體的體積與原來圓柱的體積有什么關(guān)系?為什么?
板書:
長方體體積底面積高。
8、根據(jù)上面的實驗和討論,想一想,可以怎樣求圓柱的體積?
生答:把圓柱切拼成一個近似的長方體,拼成的長方體的底面積等于圓柱的底面積,拼成長方體的高等于圓柱的高,因為長方體體積=底面積×高,所以圓柱體積=底面積×高。
9、用字母如何表示。
v=sh。
10、小結(jié)。
圓柱的體積是怎樣推導出來的?計算圓柱的體積必須知道哪些條件?
11、教學算一算。
審題。提問:你能獨立完成這題嗎?指名一同學板演,其余學生做在練習本上。集體訂正:列式依據(jù)是什么?應注意哪些問題?最后結(jié)果用體積單位)。
12、教學“試一試”
小結(jié):求圓柱的體積,必須知道底面積和高。如果不知道底面積,只知道半徑r,通過什么途徑求出圓柱的體積?如果知道d呢?知道c呢?知道r、d、c,都要先求出底面積再求體積。
三、鞏固練習。
課后“練一練”里的練習題。
四、課堂小結(jié)。
這節(jié)課學習了什么內(nèi)容?圓柱的體積怎樣計算,這個公式是怎樣得到的?指出:這節(jié)課,我們通過轉(zhuǎn)化,把圓柱體切拼轉(zhuǎn)化成長方體,(在課題下板書:圓柱轉(zhuǎn)化長方體)得出了圓柱體的體積計算公式v=sh。
圓柱的體積教學設(shè)計反思篇十四
1、使學生熟練掌握圓柱的體積公式,能正確計算圓柱體積或圓柱形容器的容積。
2、使學生體驗解決問題策略的多樣化,不斷激發(fā)學生以數(shù)學的好奇心和求知欲。
3、培養(yǎng)學生分析問題,解決問題及實踐應用能力。
掌握有關(guān)圓柱的表面積和體積的計算,會綜合運用。
運用所學的知識解決生活中的實際問題。
一、復習回顧。
1、下列圖形的面積公式是什么?
長方形的面積=。
正方形的面積=。
平行四邊形的面積=。
梯形的面積=。
2、長方體的表面積=。
如果圓柱的體積用v表示,底面積用s表示,高用h表示,則圓柱的體積公式用字母表示為。
如果圓柱的底面半徑為r,高用h表示,則圓柱的體積公式為。
三、例題學習:
四、課堂練習。
1)底面積0.6平方米,高0.5米2)底面半徑4厘米,高12厘米。
3)底面直徑5分米,高6分米。
圓柱的體積教學設(shè)計反思篇十五
圓柱的體積的導入,課本是先讓學生回憶“長方體、正方體的體積都可以用它們的底面積乘高來計算”,再接著馬上提問:“圓柱的體積怎樣計算呢?”讓學生們猜一猜。猜想計算方法固然有好處,但要讓學生馬上做實驗理解圓柱體積計算公式的推導過程,我覺得這樣教學引入,學生的思維跳躍得太快,銜接性不強,不利于學生理解和掌握實驗的用意,課堂效果就會明顯不佳。我認為,不妨在回憶了長方體、正方體體積計算方法之后,接著復習一下圓面積計算公式的推導過程,這樣有助于學生猜想,并能更好地聯(lián)系舊知,思維過度自然、流暢,便于學生的思維走向正確的方向,這時教師的引導才是行之有效的。
學生進行數(shù)學探究時,教師應給予充分的思考空間,創(chuàng)設(shè)實踐操作的條件,營造出思考的環(huán)境氛圍。教學“圓柱的體積”時,由于學校教學條件差,沒有更多的學具提供給學生,只是由教師示范演示推導過程:把圓柱的底面分成若干份(例如,分成16等份),然后把圓柱切開,照課本上的圖拼起來,圓柱體就轉(zhuǎn)化成一個近似的長方體;接著教師指導學生悟出這個長方體的長相當于圓柱的哪一部分的長度,寬是圓柱哪一部分的長度,高是圓柱的哪一部分的長度,圓柱的體積怎樣計算的道理,從而推導出圓柱體積的計算公式。學生沒有親身參與操作,就缺乏情感空間感覺的體驗,而且這部分又是小學階段立體圖形的教學難點,學生得不到充分的思考空間,也不利于教師營造思考的環(huán)境,不便于學生思考如何利用已知圖形體積和教學思想去解決這一問題。學生缺乏行為、認知的投入和積極的情感投入,所以,課堂效果差就可想而知了。
例題“練一練”中的題目都比較淺顯,學生還能容易掌握,但遇到多轉(zhuǎn)幾個彎的題目就束手無策了。所以,為了讓學生能熟練地掌握計算圓柱的體積,教師在設(shè)計練習時要多動腦,花心思。