2023年人教版初中完全平方公式教案(專業(yè)20篇)

字號:

    一個好的教案應(yīng)當(dāng)合理安排教學(xué)內(nèi)容,設(shè)計生動活潑的教學(xué)活動。那么我們該如何編寫一份高質(zhì)量的教案呢?首先,要明確教學(xué)目標(biāo),確保教學(xué)的針對性和實效性;其次,要合理選擇和設(shè)計教學(xué)內(nèi)容,使之符合學(xué)生的學(xué)習(xí)需求和發(fā)展水平;還要運用多種有效的教學(xué)方法,激發(fā)學(xué)生的學(xué)習(xí)興趣和積極性;最后,在教學(xué)過程中,要注意引導(dǎo)學(xué)生進(jìn)行思考和探究,提高他們的自主學(xué)習(xí)和解決問題的能力。范文中的教案設(shè)計思路獨特,能夠啟發(fā)教師創(chuàng)新教學(xué)方式。
    人教版初中完全平方公式教案篇一
    1、經(jīng)歷探索完全平方公式的過程,發(fā)展學(xué)生觀察、交流、歸納、猜測、驗證等能力。
    3、數(shù)形結(jié)合的數(shù)學(xué)思想和方法。
    會推導(dǎo)完全平方公式,并能運用公式進(jìn)行簡單的計算。
    掌握完全平方公式的結(jié)構(gòu)特征,理解公式中a、b的廣泛含義。
    一、學(xué)習(xí)準(zhǔn)備。
    1、利用多項式乘以多項式計算:(a+b)2(a—b)2。
    2、這兩個特殊形式的多項式乘法結(jié)果稱為完全平方公式。
    3、完全平方公式的。幾何意義:閱讀課本64頁,完成填空。
    (a+b)2=a2+2ab+b2。
    (a—b)2=a2—2ab+b2。
    左邊是形式,右邊有三項,其中兩項是形式,另一項是()。
    www.。
    5、兩個完全平方公式的轉(zhuǎn)化:(a—b)2=2=()2+2()+()2=()。
    二、合作探究。
    1、利用乘法公式計算:
    (3a+2b)2(2)(—4x2—1)2。
    分析:要分清題目中哪個式子相當(dāng)于公式中的a,哪個式子相當(dāng)于公式中的b。
    2、利用乘法公式計算:
    992(2)()2。
    分析:要利用完全平方公式,需具備完全平方公式的結(jié)構(gòu),所以992可以轉(zhuǎn)化()2,()2可以轉(zhuǎn)化為()2。
    (a+b+c)2(2)(a—b)3。
    三、學(xué)習(xí)。
    對照學(xué)習(xí)目標(biāo),通過預(yù)習(xí),你覺得自己有哪些方面的收獲?又存在哪些方面的疑惑?
    四、自我測試。
    1、下列計算是否正確,若不正確,請訂正;
    (1)(—1+3a)2=9a2—6a+1。
    (2)(3x2—)2=9x4—。
    (3)(xy+4)2=x2y2+16。
    (4)(a2b—2)2=a2b2—2a2b+4。
    2、利用乘法公式計算:
    (1)(3x+1)2。
    (2)(a—3b)2。
    (3)(—2x+)2。
    (4)(—3m—4n)2。
    3、利用乘法公式計算:
    9992。
    4、先化簡,再求值;
    (m—3n)2—(m+3n)2+2,其中m=2,n=3。
    五、思維拓展。
    2、多項式4x2+1加上一個單項式后,使它能成為一個整式的完全平方,那么加上的單項式可以是()。
    3、已知(x+y)2=9,(x—y)2=5,求xy的值。
    4、x+y=4,x—y=10,那么xy=()。
    5、已知x—=4,則x2+=()。
    人教版初中完全平方公式教案篇二
    (2)切勿把“乘積項”2ab中的2丟掉.
    今后在教學(xué)中?,要注意以下幾點:
    1.讓學(xué)生自編幾道符合平方差公式結(jié)構(gòu)的計算題,目的是辨認(rèn)題目的結(jié)構(gòu)特征.
    2.引入完全平方公式,讓學(xué)生用文字概括公式的內(nèi)容,培養(yǎng)抽象的數(shù)字思維能力.
    人教版初中完全平方公式教案篇三
    一、教學(xué)內(nèi)容:
    本節(jié)內(nèi)容是人教版教材八年級上冊,第十四章第2節(jié)乘法公式的第二課時——完全平方公式。
    二、教材分析:
    完全平方公式是乘法公式的重要組成部分,也是乘法運算知識的升華,它是在學(xué)生學(xué)習(xí)整式乘法后,對多項式乘法中出現(xiàn)的一種特殊的算式的總結(jié),體現(xiàn)了從一般到特殊的思想方法。完全平方公式是學(xué)生后續(xù)學(xué)好因式分解、分式運算的必備知識,它還是配方法的基本模式,為以后學(xué)習(xí)一元二次方程、函數(shù)等知識奠定了基礎(chǔ),所以說完全平方公式屬于代數(shù)學(xué)的基礎(chǔ)地位。
    本節(jié)課內(nèi)容是在學(xué)生掌握了平方差公式的基礎(chǔ)上,研究完全平方公式的推導(dǎo)和應(yīng)用,公式的發(fā)現(xiàn)與驗證為學(xué)生體驗規(guī)律探索提供了一種較好的模式,培養(yǎng)學(xué)生逐步形成嚴(yán)密的邏輯推理能力。完全平方公式的學(xué)習(xí)對簡化某些代數(shù)式的運算,培養(yǎng)學(xué)生的求簡意識很有幫助。使學(xué)生了解到完全平方公式是有力的數(shù)學(xué)工具。
    重點:掌握完全平方公式,會運用公式進(jìn)行簡單的計算。
    難點:理解公式中的字母含義,即對公式中字母a、b的理解與正確應(yīng)用。
    三、教學(xué)目標(biāo)。
    (1)經(jīng)歷探索完全平方公式的推導(dǎo)過程,掌握完全平方公式,并能正確運用公式進(jìn)行簡單計算。
    (2)進(jìn)一步發(fā)展學(xué)生的符號感和推理能力,了解公式的幾何背景,感受數(shù)與形之間的聯(lián)系,學(xué)會獨立思考。
    (3)通過推導(dǎo)完全平方公式及分析結(jié)構(gòu)特征,培養(yǎng)學(xué)生觀察、分析、歸納的能力,學(xué)會與他人合作交流,體驗解決問題的多樣性。
    (4)體驗完全平方公式可以簡化運算從而激發(fā)學(xué)生的學(xué)習(xí)興趣;在自主探究、合作交流的學(xué)習(xí)過程中獲得體驗成功的喜悅,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的自信心。
    四、學(xué)情分析與教法學(xué)法。
    學(xué)情分析:課程標(biāo)準(zhǔn)提出數(shù)學(xué)教學(xué)活動必須建立在學(xué)生的認(rèn)知發(fā)展水平和已有的知識經(jīng)驗基礎(chǔ)之上,本節(jié)課就是在前面的學(xué)習(xí)中,學(xué)生已經(jīng)掌握了整式的乘法運算及平方差公式的基礎(chǔ)上開展的,具備了初步的總結(jié)歸納能力。另外,14歲的中學(xué)生充滿了好奇心,有較強(qiáng)的求知欲、創(chuàng)造欲、表現(xiàn)欲,所以只有能調(diào)動學(xué)生的學(xué)習(xí)熱情,本節(jié)內(nèi)容才較易掌握。但八年級學(xué)生的探究能力有差異,邏輯推理能力也有待于提高,而且易粗心馬虎,這都是本節(jié)課要注意的問題。
    學(xué)法:以自主探究為主要學(xué)習(xí)方式,使學(xué)生在獨立思考、歸納總結(jié)、合作交流。
    總結(jié)反思中獲得數(shù)學(xué)知識與技能。
    教法:以啟發(fā)引導(dǎo)式為主要教學(xué)方式,在引導(dǎo)探究、歸納總結(jié)、典例精析、合作交流的教學(xué)過程中,教師做好組織者和引導(dǎo)者,讓學(xué)生在老師的指導(dǎo)下處于主動探究的學(xué)習(xí)狀態(tài)。
    五、教學(xué)過程(略)。
    六、教學(xué)評價。
    在教學(xué)中,教師在精心設(shè)置教學(xué)環(huán)節(jié)中,做到以學(xué)生為主體,做好組織者和引導(dǎo)者,全面評價學(xué)生在知識技能、數(shù)學(xué)思考、問題解決和情感態(tài)度等方面的表現(xiàn)。教師通過情境引入、提供問題引導(dǎo)學(xué)生從已有的知識為出發(fā)點,自主探究,發(fā)現(xiàn)問題,深入思考。學(xué)生解決問題要以獨立思考為主,當(dāng)遇到困難時學(xué)會求助交流,教師也要給學(xué)生思考交流的時間,讓學(xué)生經(jīng)歷得出結(jié)論的過程,培養(yǎng)發(fā)現(xiàn)問題解決問題的能力。
    在整個學(xué)習(xí)過程中,通過對學(xué)生參與自主探究的程度、合作交流的意識以及獨立思考的習(xí)慣,發(fā)現(xiàn)問題的能力進(jìn)行評價,并對學(xué)生的想法或結(jié)論給予鼓勵評價。
    人教版初中完全平方公式教案篇四
    二、學(xué)習(xí)重點。
    三、學(xué)習(xí)難點。
    靈活運用平方差和完全平方公式進(jìn)行整式的簡便運算。
    四、學(xué)習(xí)設(shè)計。
    (一)預(yù)習(xí)準(zhǔn)備。
    (2)思考:如何更簡單迅捷地進(jìn)行各種乘法公式的運算?[。
    (1)(2)(3)(4)。
    2.計算:
    (1)(2)。
    (二)學(xué)習(xí)過程。
    由反之。
    反之。
    1、填空:
    (1)(2)(3)。
    (4)(5)。
    (6)。
    (7)若,則k=。
    例1計算:1.2.
    現(xiàn)在我們從幾何角度去解釋完全平方公式:
    從圖(1)中可以看出大正方形的邊長是a+b,
    它是由兩個小正方形和兩個矩形組成,所以。
    大正方形的面積等于這四個圖形的面積之和.
    則s==。
    即:
    如圖(2)中,大正方形的邊長是a,它的面積是;矩形dcge與矩形bchf是全等圖形,長都是,寬都是,所以它們的面積都是;正方形hcgm的邊長是b,其面積就是;正方形afme的邊長是,所以它的面積是.從圖中可以看出正方形aemf的面積等于正方形abcd的面積減去兩個矩形dcge和bchf的面積再加上正方形hcgm的面積.也就是:(a-b)2=.這也正好符合完全平方公式.
    例2.計算:。
    (1)(2)。
    變式訓(xùn)練:
    (1)(2)。
    (3)(4)(x+5)2c(x-2)(x-3)。
    (5)(x-2)(x+2)-(x+1)(x-3)(6)(2x-y)2-4(x-y)(x+2y)。
    拓展:1、(1)已知,則=。
    (2)已知,求________,________。
    (3)不論為任意有理數(shù),的值總是。
    a.負(fù)數(shù)b.零c.正數(shù)d.不小于2。
    2、(1)已知,求和的值。
    (2)已知,求的值。
    (3).已知,求的值。
    回顧小結(jié)。
    1.完全平方公式的使用:在做題過程中一定要注意符號問題和正確認(rèn)識a、b表示的意義,它們可以是數(shù)、也可以是單項式,還可以是多項式,所以要記得添括號。
    2.解題技巧:在解題之前應(yīng)注意觀察思考,選擇不同的方法會有不同的效果,要學(xué)會優(yōu)化選擇。
    人教版初中完全平方公式教案篇五
    教學(xué)目標(biāo):
    1、經(jīng)歷探索完全平方公式的過程,并從完全平方公式的推導(dǎo)過程中,培養(yǎng)學(xué)生觀察、發(fā)現(xiàn)、歸納、概括、猜想等探究創(chuàng)新能力,發(fā)展邏輯推理能力和有條理的表達(dá)能力。
    2、體會公式的發(fā)現(xiàn)和推導(dǎo)過程,理解公式的本質(zhì),從不同的層次上理解完全平方公式,并會運用公式進(jìn)行簡單的計算。
    4、在學(xué)習(xí)中使學(xué)生體會學(xué)習(xí)數(shù)學(xué)的樂趣,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的信心,感愛數(shù)學(xué)的內(nèi)在美。
    教學(xué)重點:
    1、弄清完全平方公式的來源及其結(jié)構(gòu)特點,用自己的.語言說明公式及其特點;
    教學(xué)難點:
    教學(xué)方法:
    探索討論、歸納總結(jié)。
    教學(xué)過程:
    一、回顧與思考。
    活動內(nèi)容:復(fù)習(xí)已學(xué)過的平方差公式。
    1、平方差公式:(a+b)(a―b)=a2―b2;
    公式的結(jié)構(gòu)特點:左邊是兩個二項式的乘積,即兩數(shù)和與這兩數(shù)差的積。
    右邊是兩數(shù)的平方差。
    2、應(yīng)用平方差公式的注意事項:弄清在什么情況下才能使用平方差公式。
    二、情境引入。
    活動內(nèi)容:提出問題:
    一塊邊長為a米的正方形實驗田,由于效益比較高,所以要擴(kuò)大農(nóng)田,將其邊長增加b米,形成四塊實驗田,以種植不同的新品種(如圖)。
    用不同的形式表示實驗田的總面積,并進(jìn)行比較。
    活動內(nèi)容:
    1、通過多項式的乘法法則來驗證(a+b)2=a2+2ab+b2的正確性。并利用兩數(shù)和的完全平方公式推導(dǎo)出兩數(shù)差的完全平方公式:(a―b)2=a2―2ab+b2。
    2、引導(dǎo)學(xué)生利用幾何圖形來驗證兩數(shù)差的完全平方公式。
    3、分析完全平方公式的結(jié)構(gòu)特點,并用語言來描述完全平方公式。
    結(jié)構(gòu)特點:左邊是二項式(兩數(shù)和(差))的平方;
    右邊是兩數(shù)的平方和加上(減去)這兩數(shù)乘積的兩倍。
    語言描述:兩數(shù)和(或差)的平方,等于這兩數(shù)的平方和加上(或減去)這兩數(shù)積的兩倍。
    2、總結(jié)口訣:首平方,尾平方,兩倍乘積放中央,加減看前方,同加異減。
    五、鞏固練習(xí):
    1、下列各式中哪些可以運用完全平方公式計算。
    一、學(xué)習(xí)目標(biāo)。
    1、會推導(dǎo)完全平方公式,并能運用公式進(jìn)行簡單的計算。
    二、學(xué)習(xí)重點:會用完全平方公式進(jìn)行運算。
    三、學(xué)習(xí)難點:理解完全平方公式的結(jié)構(gòu)特征并能靈活應(yīng)用公式進(jìn)行計算。
    四、學(xué)習(xí)設(shè)計。
    (一)預(yù)習(xí)準(zhǔn)備。
    (1)預(yù)習(xí)書p23―26。
    (2)思考:和的平方等于平方的和嗎?
    1、已知實數(shù)x、y都大于2,試比較這兩個數(shù)的積與這兩個數(shù)的和的大小,并說明理由。
    2、已知(a+b)2=24,(a―b)2=20,求:
    (1)ab的值是多少?
    (2)a2+b2的值是多少?
    3、已知2(x+y)=―6,xy=1,求代數(shù)式(x+2)―(3xy―y)的值。
    1、(5―x2)2等于;
    答案:25―10x2+x4。
    解析:解答:(5―x2)2=25―10x2+x4。
    2、(x―2y)2等于;
    答案:x2―8xy+4y2。
    解析:解答:(x―2y)2=x2―8xy+4y2。
    3、(3a―4b)2等于;
    答案:9a2―24ab+16b2。
    解析:解答:(3a―4b)2=9a2―24ab+16b2。
    人教版初中完全平方公式教案篇六
    重點、難點根據(jù)公式的特征及問題的特征選擇適當(dāng)?shù)墓接嬎?
    教學(xué)過程。
    一、議一議。
    1.邊長為(a+b)的正方形面積是多少?
    2.邊長分別為a、b拍的兩個正方形面積和是多少?
    3.你能比較(1)(2)的結(jié)果嗎?說明你的理由.師生共同討論:學(xué)生回答(1)(a+b)(2)a+b(3)因為(a+b)=a+2ab+b,所以(a+b)-(a+b)=a+2ab+b-a-b=2ab,即(1)中的正方形面積比(2)中的正方形面積大.
    二、做一做。
    例1.利用完全平方式計算1.102。
    三、試一試。
    計算:。
    1.(a+b+c)。
    2.(a+b)師生共同分析:對于1要把多項式完全平方轉(zhuǎn)化為二項式的完全平方,要使用加法結(jié)合律,為使用完全平方公式創(chuàng)造條件.如(a+b+c)=[a+(b+c)]對于(2)可化為(a+b)=(a+b)(a+b).學(xué)生動筆:在練習(xí)本上解答,并與同伴交流你的做法.學(xué)生敘述。
    四、隨堂練習(xí)。
    p381。
    五、小結(jié)。
    本節(jié)課進(jìn)一步學(xué)習(xí)了完全平方公式,在應(yīng)用此公式運算時注意以下幾點.1.使用完全平方公式首先要熟記公式和公式的'特征,不能出現(xiàn)(ab)=ab的錯誤,或(ab)=aab+b(漏掉2倍)等錯誤.2.要能根據(jù)公式的特征及題目的特征靈活選擇適當(dāng)?shù)墓接嬎?3.用加法結(jié)合律,可為使用公式創(chuàng)造了條件.利用了這種方法,可以把多項式的完全平方轉(zhuǎn)化為二項式的完全平方.
    六、作業(yè)。
    課本習(xí)題1.14p381、2、3.
    七、教后反思。
    1.9整式的除法第一課時單項式除以單項式教學(xué)目標(biāo)1.經(jīng)歷探索單項式除法的法則過程,了解單項式除法的意義.
    2.理解單項式除法法則,會進(jìn)行單項式除以單項式運算.重點、難點重點:單項式除以單項式的運算.難點:單項式除以單項式法則的理解.
    將本文的word文檔下載到電腦,方便收藏和打印。
    人教版初中完全平方公式教案篇七
    3.4探究實際問題與一元一次方程組。
    掌握一元一次方程得解法,了解銷售中的數(shù)量關(guān)系。
    能夠分析實際問題中的數(shù)量關(guān)系,找相等關(guān)系,列出一元一次方程。
    基本思想。
    基本活動經(jīng)驗體會解決實際問題的一般步驟及盈虧中的關(guān)系。
    重點探索并掌握列一元一次方程解決實際問題的方法,
    教學(xué)。
    難點找出已知量與未知量之間的關(guān)系及相等關(guān)系。
    教具資料準(zhǔn)備教師準(zhǔn)備:課件。
    書、本。
    教學(xué)過程自備。
    補(bǔ)充集備。
    補(bǔ)充。
    探究銷售中的盈虧問題:
    1、商品原價200元,九折出售,賣價是元。
    2、商品進(jìn)價是30元,售價是50元,則利潤。
    是元。
    2、某商品原來每件零售價是a元,現(xiàn)在每件降價10%,降價后每件零售價是元。
    3、某種品牌的彩電降價20%以后,每臺售價為a元,則該品牌彩電每臺原價應(yīng)為元。
    4、某商品按定價的八折出售,售價是14.8元,則原定售價是。
    (學(xué)生總結(jié)公式)。
    熟悉各個量之間的聯(lián)系有助于熟悉利潤、利潤率售價進(jìn)價之間聯(lián)系。
    分析:售價=進(jìn)價+利潤。
    售價=(1+利潤率)×進(jìn)價。
    (3)某商場把進(jìn)價為1980元的商品按標(biāo)價的八折出售,仍獲利10%,則該商品的標(biāo)價為元。
    注:標(biāo)價×n/10=進(jìn)(1+率)。
    則這種藥品在2005年漲價前價格為元。
    通過本節(jié)課的學(xué)習(xí)你有哪些收獲?你還有哪些疑惑?
    虧損還是盈利對比售價與進(jìn)價的關(guān)系才能加以判斷。
    小組研究解決提出質(zhì)疑。
    優(yōu)生展示講解質(zhì)疑。
    板書設(shè)計一元一次方程的應(yīng)用-----盈虧問題。
    相關(guān)的關(guān)系式:例題。
    課后反思售價、進(jìn)價、利潤、利潤率、標(biāo)價、折扣數(shù)這幾個量之間的關(guān)系一定清楚,之后才能靈活運用,通過變式練習(xí)加強(qiáng)記憶提高能力。
    人教版初中完全平方公式教案篇八
    探索單項式除以單項式法則(出示投影1)計算下列各題,并說說你的理由1.xyx,(8mn)(2mn),(abc)(3ab).師生共同分析:此題是做除法運算,可以從兩方面思考:根據(jù)除法是乘法的逆運算,將除法問題轉(zhuǎn)化為乘法問題去解決,即()x=xy,由單項式乘以單項式法則可得(xy)x=xy,因此,xyx=xy.另外,根據(jù)同底數(shù)冪的除法法則,由約分也可得=xy.學(xué)生動筆:寫出(2)(3)題的結(jié)果。教師板書:xyx=xy,(8mn)(2mn)=4n,(abc)(3ab)=abc師:以上運算是單項式除以單項式的運算,你能說說如何進(jìn)行單項式除以單項式的運算?學(xué)生活動:小組討論,教師引導(dǎo)學(xué)生從系數(shù)、同底數(shù)冪、只在被除式含有的字母三方面思考,討論充分后,由一名同學(xué)敘述,其余同學(xué)補(bǔ)充糾正。出示單項式除法法則(投影顯示)單項式相除,把系數(shù)、同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式。
    p401學(xué)生活動:讓四名同學(xué)到黑板板演,其余同學(xué)在練習(xí)本上計算,同伴可交流,互相訂正。教師巡回檢查,對存在問題及時更正。待四名板演同學(xué)完成后,師生共同訂正。
    本節(jié)課主要學(xué)習(xí)了單項式除以單項式的運算。在運用法則計算時應(yīng)注意以下幾點:
    1.系數(shù)相除與同底數(shù)冪相除的區(qū)別;
    2.符號問題;
    人教版初中完全平方公式教案篇九
    引例講解:將下列各式分解因式。
    1、x2+6x+92、4x2-20x+25。
    問題:這兩題首先怎么分析?
    生14:將9改寫成32,6x正好是x與3的乘積的2倍。(學(xué)生回答,教師板書)。
    生15:將4x2寫成(2x)2,25寫成52,20x寫成2×2x×5。
    x2+6x+9=x2+2×x×3+32=(x+3)2。
    4x2-20x+25=(2x)2-2×2x×5+52=(2x-5)2。
    (聯(lián)系字母表達(dá)式用箭頭對應(yīng)表示,加深學(xué)生印象。)。
    生16:由符號來決定。
    師:能不能具體點。
    生16:由中間一項的符號決定,就是兩個數(shù)乘積2倍這項的符號決定,是正,就是兩個數(shù)的和;是負(fù),就是兩個數(shù)的差。
    師:總之,在分解完全平方式時,要根據(jù)第二項的符號來選擇運用哪一個完全平方公式。
    例題1:把25x4+10x2+1分解因式。
    師:這道題目能否運用以前所學(xué)的方法分解?就題目本身有什么特點?可以怎么分解?
    生17:題目符合完全平方式的特點,可以將25x4改寫成(5x2)2,1就是12,10x2改寫成2×5x2×1。(此學(xué)生板演,過程略)。
    例題2:把-x2-4y2+4xy分解因式。
    師:按照常規(guī)我們首先怎么辦?
    生齊答:提取負(fù)號?!步處煱鍟?(x2+4y2-4xy)〕以下過程學(xué)生板演。
    師:如果是這道題:4xy-x2-4y2怎么分解呢?(教師改變剛才題型)。
    提示:從項的特征進(jìn)行考慮,怎樣轉(zhuǎn)化比較合理?四人小組討論。
    生18:同樣還是將負(fù)號提取改變成完全平方式的形式。
    師:從這里我們可以發(fā)現(xiàn),只要三項式中能改寫成平方的兩項是同號,且另一項為兩底數(shù)積的2倍,我們都能利用這個公式分解,若這兩項同為正則可直接分解,若同為負(fù)則先提取負(fù)號再分解。
    練習(xí)題:課本p21練習(xí):第1題,學(xué)生板演,教師講解,學(xué)生板演的同時,教師提示注意點、多項式的特征;第2題,學(xué)生口答。
    例題3:把3ax2+6axy+3ay2分解因式。
    師:先觀察,再選擇適當(dāng)?shù)姆椒ā?學(xué)生板演,教師點評)。
    練習(xí):課本p22第3題分兩組學(xué)生板演,教師評講、適當(dāng)提示注意點。
    師:這一堂課我們一起研究了完全平方式的有關(guān)知識,同學(xué)們先自查一下自己的收獲,然后請同學(xué)發(fā)表自己的見解。(學(xué)生小聲討論)。
    生甲:我學(xué)到了如何將完全平方式分解因式,遇到三項式中有兩項符號相同且能化成平方的形式,另一項為這兩個數(shù)的積的2倍的形式,如果能化成平方項是負(fù)的,首先將負(fù)號提取再分解。第二項是正的就是兩數(shù)的和的平方,第二項是負(fù)的就是兩數(shù)差的平方。
    生乙:有公因式可提取的先提取公因式,然后再分解,同時根據(jù)第二項的符號來選用合適的公式。
    教師布置課堂作業(yè):課本p23習(xí)題8.2a組4~5偶數(shù)題。
    課外作業(yè):課本p23習(xí)題8.2a組4~5奇數(shù)題。
    下課!
    人教版初中完全平方公式教案篇十
    1、使學(xué)生理解完全平方公式的意義,弄清完全平方公式的形式和特點;使學(xué)生知道把完全平方公式反過來就可以得到相應(yīng)的因式分解。
    2、掌握運用完全平方公式分解因式的`方法,能正確運用完全平方公式把多項式分解因式(直接用公式不超過兩次)。
    教學(xué)方法:對比發(fā)現(xiàn)法課型新授課教具投影儀。
    教師活動:學(xué)生活動。
    新課講解:
    (投影)我們把形如a2+2ab+b2與a2-2ab+b2叫做完全平方式,和平方差公式一樣,我們也可以利用它把一些多項式因式分解。例如:
    a2+8a+16=a2+2×4a+42=(a+4)2。
    a2-8a+16=a2-2×4a+42=(a-4)2。
    (要強(qiáng)調(diào)注意符號)。
    首先我們來試一試:(投影:牛刀小試)。
    1.把下列各式分解因式:
    (1)x2+8x+16;;(2)25a4+10a2+1。
    (3)(m+n)2-4(m+n)+4。
    (教師強(qiáng)調(diào)步驟的重要性,注意發(fā)現(xiàn)學(xué)生易錯點,及時糾正)。
    2.把81x4-72x2y2+16y4分解因式。
    (本題用了兩次乘法公式,難度稍大,教師要鼓勵學(xué)生大膽嘗試,敢于創(chuàng)新)。
    將乘法公式反過來就得到多項式因式分解的公式。運用這些公式把一個多項式分解因式的方法叫做運用公式法。
    練習(xí):第88頁練一練第1、2題。
    人教版初中完全平方公式教案篇十一
    重點、難點根據(jù)公式的特征及問題的特征選擇適當(dāng)?shù)墓接嬎?
    教學(xué)過程。
    一、議一議。
    1.邊長為(a+b)的正方形面積是多少?
    2.邊長分別為a、b拍的兩個正方形面積和是多少?
    3.你能比較(1)(2)的結(jié)果嗎?說明你的理由.師生共同討論:學(xué)生回答(1)(a+b)(2)a+b(3)因為(a+b)=a+2ab+b,所以(a+b)-(a+b)=a+2ab+b-a-b=2ab,即(1)中的正方形面積比(2)中的正方形面積大.
    二、做一做。
    例1.利用完全平方式計算1.102。
    三、試一試。
    計算:。
    1.(a+b+c)。
    2.(a+b)師生共同分析:對于1要把多項式完全平方轉(zhuǎn)化為二項式的完全平方,要使用加法結(jié)合律,為使用完全平方公式創(chuàng)造條件.如(a+b+c)=[a+(b+c)]對于(2)可化為(a+b)=(a+b)(a+b).學(xué)生動筆:在練習(xí)本上解答,并與同伴交流你的做法.學(xué)生敘述。
    四、隨堂練習(xí)。
    p381。
    五、小結(jié)。
    本節(jié)課進(jìn)一步學(xué)習(xí)了完全平方公式,在應(yīng)用此公式運算時注意以下幾點.1.使用完全平方公式首先要熟記公式和公式的'特征,不能出現(xiàn)(ab)=ab的錯誤,或(ab)=aab+b(漏掉2倍)等錯誤.2.要能根據(jù)公式的特征及題目的特征靈活選擇適當(dāng)?shù)墓接嬎?3.用加法結(jié)合律,可為使用公式創(chuàng)造了條件.利用了這種方法,可以把多項式的完全平方轉(zhuǎn)化為二項式的完全平方.
    六、作業(yè)。
    課本習(xí)題1.14p381、2、3.
    七、教后反思。
    1.9整式的除法第一課時單項式除以單項式教學(xué)目標(biāo)1.經(jīng)歷探索單項式除法的法則過程,了解單項式除法的意義.
    2.理解單項式除法法則,會進(jìn)行單項式除以單項式運算.重點、難點重點:單項式除以單項式的運算.難點:單項式除以單項式法則的理解.
    人教版初中完全平方公式教案篇十二
    (2)思考:如何更簡單迅捷地進(jìn)行各種乘法公式的運算?[。
    (1)(2)(3)(4)。
    2、計算:
    (1)(2)。
    由反之。
    反之。
    1、填空:
    (1)(2)(3)。
    (4)(5)。
    (6)。
    (7)若,則k=。
    例1計算:1.2.
    現(xiàn)在我們從幾何角度去解釋完全平方公式:
    從圖(1)中可以看出大正方形的邊長是a+b,
    它是由兩個小正方形和兩個矩形組成,所以。
    大正方形的面積等于這四個圖形的面積之和。
    則s==。
    即:
    如圖(2)中,大正方形的邊長是a,它的面積是;矩形dcge與矩形bchf是全等圖形,長都是,寬都是,所以它們的面積都是;正方形hcgm的邊長是b,其面積就是;正方形afme的邊長是,所以它的面積是。從圖中可以看出正方形aemf的面積等于正方形abcd的'面積減去兩個矩形dcge和bchf的面積再加上正方形hcgm的面積。也就是:(a-b)2=。這也正好符合完全平方公式。
    例2.計算:。
    (1)(2)。
    變式訓(xùn)練:
    (1)(2)。
    (3)(4)(x+5)2–(x-2)(x-3)。
    (5)(x-2)(x+2)-(x+1)(x-3)(6)(2x-y)2-4(x-y)(x+2y)。
    拓展:1、(1)已知,則=。
    (2)已知,求________,________。
    (3)不論為任意有理數(shù),的值總是()。
    a.負(fù)數(shù)b.零c.正數(shù)d.不小于2。
    2、(1)已知,求和的值。
    (2)已知,求的值。
    (3)。已知,求的值。
    1、完全平方公式的使用:在做題過程中一定要注意符號問題和正確認(rèn)識a、b表示的意義,它們可以是數(shù)、也可以是單項式,還可以是多項式,所以要記得添括號。
    2、解題技巧:在解題之前應(yīng)注意觀察思考,選擇不同的方法會有不同的效果,要學(xué)會優(yōu)化選擇。
    人教版初中完全平方公式教案篇十三
    探索單項式除以單項式法則(出示投影1)計算下列各題,并說說你的理由1.xyx,(8mn)(2mn),(abc)(3ab)。師生共同分析:此題是做除法運算,可以從兩方面思考:根據(jù)除法是乘法的逆運算,將除法問題轉(zhuǎn)化為乘法問題去解決,即()x=xy,由單項式乘以單項式法則可得(xy)x=xy,因此,xyx=xy。另外,根據(jù)同底數(shù)冪的除法法則,由約分也可得=xy.學(xué)生動筆:寫出(2)(3)題的結(jié)果。教師板書:xyx=xy,(8mn)(2mn)=4n,(abc)(3ab)=abc師:以上運算是單項式除以單項式的運算,你能說說如何進(jìn)行單項式除以單項式的運算?學(xué)生活動:小組討論,教師引導(dǎo)學(xué)生從系數(shù)、同底數(shù)冪、只在被除式含有的字母三方面思考,討論充分后,由一名同學(xué)敘述,其余同學(xué)補(bǔ)充糾正。出示單項式除法法則(投影顯示)單項式相除,把系數(shù)、同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式。
    p401學(xué)生活動:讓四名同學(xué)到黑板板演,其余同學(xué)在練習(xí)本上計算,同伴可交流,互相訂正。教師巡回檢查,對存在問題及時更正。待四名板演同學(xué)完成后,師生共同訂正。
    本節(jié)課主要學(xué)習(xí)了單項式除以單項式的運算。在運用法則計算時應(yīng)注意以下幾點:。
    1、系數(shù)相除與同底數(shù)冪相除的區(qū)別;
    2、符號問題;
    人教版初中完全平方公式教案篇十四
    理解兩個完全平方公式的結(jié)構(gòu),靈活運用完全平方公式進(jìn)行運算。
    在運用完全平方公式的過程中,進(jìn)一步發(fā)展學(xué)生的符號演算的能力,提高運算能力。
    培養(yǎng)學(xué)生在獨立思考的基礎(chǔ)上,積極參與對數(shù)學(xué)問題的討論,敢于發(fā)表自己的見解。
    一、復(fù)習(xí)導(dǎo)入。
    2.計算,除了直接用兩數(shù)差的完全平方公式外,還有別的方法嗎?
    學(xué)生思考后回答:由于兩數(shù)差可以轉(zhuǎn)化成兩數(shù)和,所以還可以用兩數(shù)和的完全平方公式計算,把“”看成加數(shù),按照兩數(shù)和的完全平方公式計算,結(jié)果是一樣的。
    教師歸納:當(dāng)我們對差與和加以區(qū)分時,兩個公式是有區(qū)別的,區(qū)別是其結(jié)果的中間項一個是“減”一個是“加”,注意到區(qū)別有助于計算的準(zhǔn)確;另一方面,當(dāng)我們對差與和不加區(qū)分,全部理解成“加項”時,那么兩個公式從結(jié)構(gòu)上來看就是一致的了,其結(jié)構(gòu)都是“兩項和的平方,等于它們的平方和,加上它們的積的兩倍?!弊⒁獾剿鼈兊慕y(tǒng)一性,有于我們更深刻地理解公式特點,提高運算的靈活性。
    我們學(xué)習(xí)運算,除了要重視結(jié)果,還要重視過程,平時注意訓(xùn)練運算方法的多樣性,可以加深對算理的理解和運用,提高運算過程的合理性和靈活性,從而真正的提高運算能力。
    二、新課講解。
    溫故知新。
    與,與相等嗎?為什么?
    學(xué)生討論交流,鼓勵學(xué)生從不同的。角度進(jìn)行說理,共同歸納總結(jié)出兩條判斷的思路:
    1.對原式進(jìn)行運算,利用運算的結(jié)果來判斷;
    2.不對原式進(jìn)行運算,只做適當(dāng)變形后利用整體的方法來判斷。
    思考:與,與相等嗎?為什么?
    利用整體的方法判斷,把看成一個數(shù),則是它的相反數(shù),相反數(shù)的奇次方是相反的,所以它們不相等。
    總結(jié)歸納得到:;
    三、典例剖析。
    人教版初中完全平方公式教案篇十五
    1、使學(xué)生理解完全平方公式的意義,弄清完全平方公式的形式和特點;使學(xué)生知道把完全平方公式反過來就可以得到相應(yīng)的因式分解。
    2、掌握運用完全平方公式分解因式的'方法,能正確運用完全平方公式把多項式分解因式(直接用公式不超過兩次)。
    對比發(fā)現(xiàn)法課型新授課教具投影儀。
    學(xué)生活動。
    (投影)我們把形如a2+2ab+b2與a2-2ab+b2叫做完全平方式,和平方差公式一樣,我們也可以利用它把一些多項式因式分解。例如:
    a2+8a+16=a2+2×4a+42=(a+4)2。
    a2-8a+16=a2-2×4a+42=(a-4)2。
    (要強(qiáng)調(diào)注意符號)。
    首先我們來試一試:(投影:牛刀小試)。
    1.把下列各式分解因式:
    (1)x2+8x+16;;(2)25a4+10a2+1。
    (3)(m+n)2-4(m+n)+4。
    (教師強(qiáng)調(diào)步驟的重要性,注意發(fā)現(xiàn)學(xué)生易錯點,及時糾正)。
    2.把81x4-72x2y2+16y4分解因式。
    (本題用了兩次乘法公式,難度稍大,教師要鼓勵學(xué)生大膽嘗試,敢于創(chuàng)新)。
    將乘法公式反過來就得到多項式因式分解的公式。運用這些公式把一個多項式分解因式的方法叫做運用公式法。
    第88頁練一練第1、2題。
    人教版初中完全平方公式教案篇十六
    (l)(2)(3)(4)。
    學(xué)生活動:學(xué)生分組討論,選代表解答.。
    練習(xí)三。
    甲的計算過程是:原式。
    乙的計算過程是:原式。
    丙的計算過程是:原式。
    丁的計算過程是:原式。
    (2)想一想,與相等嗎?為什么?
    與相等嗎?為什么?
    學(xué)生活動:觀察、思考后,回答問題.。
    練習(xí)四。
    (l)(2)。
    (3)(4)。
    (四)總結(jié)、擴(kuò)展。
    這節(jié)課我們學(xué)習(xí)了乘法公式中的完全平方公式.。
    引導(dǎo)學(xué)生舉例說明公式的結(jié)構(gòu)特征,公式中字母含義和運用公式時應(yīng)該注意的問題.。
    八、布置作業(yè)。
    p1331,2.(3)(4).。
    參考答案。
    略.。
    人教版初中完全平方公式教案篇十七
    本節(jié)課屬于人教版八年級數(shù)學(xué)上冊第十五章《整式乘除與因式分解》第二節(jié)中的內(nèi)容,前一節(jié)已學(xué)習(xí)習(xí)近平方差公式,這一課主要研究完全平方公式的特征及應(yīng)用。教學(xué)關(guān)鍵是引導(dǎo)學(xué)生正確理解完全平方公式的推導(dǎo)過程,幾何背景,并能準(zhǔn)確應(yīng)用完全平方公式解決相關(guān)問題。教學(xué)后我進(jìn)行反思如下:本課的知識要點是經(jīng)歷探索完全平方公式的過程,了解公式的幾何背景,會應(yīng)公式進(jìn)行簡單的計算,教學(xué)已基本達(dá)到了預(yù)期目標(biāo),能突出重點,兼顧難點。本節(jié)課上學(xué)生體會了數(shù)形結(jié)合及轉(zhuǎn)化的數(shù)學(xué)思想,并知道猜想的結(jié)論必須要加以驗證;授課思維流暢,知識發(fā)生發(fā)展過渡自然,學(xué)生容易得到一些結(jié)論但在老師的.引導(dǎo)下又使問題的探討得以不斷深入,學(xué)生思考積極、氣氛活躍,教學(xué)效果較好。采用以小組自主探究的學(xué)習(xí)方式,同時各小組展開激烈的比賽。整節(jié)課都在緊張而愉快的氣氛中進(jìn)行。學(xué)生非?;钴S。人人都能積極參與。先從代數(shù)式的幾何意義出發(fā),激發(fā)學(xué)生的圖形觀,利用拼圖的方法,使學(xué)生在動手的過程中發(fā)現(xiàn)規(guī)律,并通過小組合作,探究歸納公式,然后強(qiáng)調(diào)數(shù)值的計算,使學(xué)生掌握公式的計算技巧。從而突出以學(xué)生為主體的探索性學(xué)習(xí)原則。讓學(xué)生自編符合完全平方公式和平方差公式結(jié)構(gòu)的計算題,從而有效地將兩類公式區(qū)分開,深刻認(rèn)識公式的結(jié)構(gòu)特征,并大大激發(fā)了學(xué)生的學(xué)習(xí)積極性。
    同時課后感覺應(yīng)該引導(dǎo)學(xué)生用文字概括公式的內(nèi)容,從而培養(yǎng)學(xué)生抽象的數(shù)學(xué)思維能力和語言表達(dá)能力。對需要幫助的學(xué)生進(jìn)行針對性的個別指導(dǎo)較少。對于學(xué)生計算中存在的問題應(yīng)讓學(xué)生自己糾錯,教師不應(yīng)全權(quán)代勞。如利用兩數(shù)和的公式計算(a+b)2環(huán)節(jié),兩位學(xué)生分別講述自己的想法之后,教師應(yīng)該讓全體學(xué)生根據(jù)其方法進(jìn)行計算,自主驗證,即使有些學(xué)生寫不出來,也會因為經(jīng)過思考而印象深刻,如果為了節(jié)省時間教師自己代勞,那樣就不能夠充分體現(xiàn)學(xué)生的主體作用,而且效果也較前者差些。
    在今后的教學(xué)中應(yīng)注意從以下幾個方面改進(jìn):1、在教學(xué)中要講法則、公式的應(yīng)用,也要講公式的推導(dǎo),使學(xué)生在理解公式,法則道理的基礎(chǔ)上進(jìn)行記憶,比如:我們要借助面積圖形對完全平方公式做直觀說明。
    人教版初中完全平方公式教案篇十八
    本節(jié)教材是初中數(shù)學(xué)七年級下冊第一章第八節(jié)的內(nèi)容,是初中數(shù)學(xué)的重要內(nèi)容之一。一方面,這是在學(xué)習(xí)了整式的加、減、乘、除及平方差公式的基礎(chǔ)上,對多項式乘法的進(jìn)一步深入和拓展;另一方面,又為學(xué)習(xí)《因式分解》《配方法》等知識奠定了基礎(chǔ),是進(jìn)一步研究《一元二次方程》《二次函數(shù)》的工具性內(nèi)容。鑒于這種認(rèn)識,我認(rèn)為,本節(jié)課不僅有著廣泛的實際應(yīng)用,而且起著承前啟后的作用。
    2、學(xué)情分析。
    從心理特征來說,初中階段的學(xué)生邏輯思維能力有待培養(yǎng),從經(jīng)驗型逐步向理論型發(fā)展,觀察能力,記憶能力和想象能力也隨著迅速發(fā)展。但同時,這一階段的學(xué)生好動,注意力易分散,愛發(fā)表見解,希望得到老師的表揚(yáng),所以在教學(xué)中應(yīng)抓住這些特點,一方面運用直觀生動的形象,引發(fā)學(xué)生的興趣,使他們的注意力始終集中在課堂上;另一方面,要創(chuàng)造條件和機(jī)會,讓學(xué)生發(fā)表見解,發(fā)揮學(xué)生學(xué)習(xí)的主動性。
    從認(rèn)知狀況來說,學(xué)生在此之前已經(jīng)學(xué)習(xí)了多項式乘法法則、平方差公式的探索過程,對“完全平方公式”已經(jīng)有了初步的認(rèn)識,為順利完成本節(jié)課的教學(xué)任務(wù)打下了基礎(chǔ),但對于“完全平方公式”的理解,(由于其抽象程度較高,)學(xué)生可能會產(chǎn)生一定的困難,所以教學(xué)中應(yīng)予以簡單明白,深入淺出的分析。
    3、教學(xué)重難點。
    根據(jù)以上對教材的地位和作用,以及學(xué)情分析,結(jié)合新課標(biāo)對本節(jié)課的要求,我將本節(jié)課的重點確定為:
    對公式(a+b)2=a2+2ab+b2的理解,包括它的推導(dǎo)過程、結(jié)構(gòu)特點、語言表述(學(xué)生自己的語言)、幾何解釋。
    難點確定為:從廣泛意義上理解完全平方公式的符號含義,培養(yǎng)學(xué)生有條理的思考和語言表達(dá)能力。
    人教版初中完全平方公式教案篇十九
    1、了解完全平方公式的特征,會用完全平方公式進(jìn)行因式分解.
    2、通過整式乘法逆向得出因式分解方法的過程,發(fā)展學(xué)生逆向思維能力和推理能力.
    3、通過猜想、觀察、討論、歸納等活動,培養(yǎng)學(xué)生觀察能力,實踐能力和創(chuàng)新能力.
    學(xué)習(xí)建議教學(xué)重點:
    人教版初中完全平方公式教案篇二十
    重點、難點根據(jù)公式的特征及問題的特征選擇適當(dāng)?shù)墓接嬎恪?BR>    1.邊長為(a+b)的正方形面積是多少?
    2.邊長分別為a、b拍的兩個正方形面積和是多少?
    3.你能比較(1)(2)的結(jié)果嗎?說明你的理由。師生共同討論:學(xué)生回答(1)(a+b)(2)a+b(3)因為(a+b)=a+2ab+b,所以(a+b)-(a+b)=a+2ab+b-a-b=2ab,即(1)中的正方形面積比(2)中的正方形面積大。
    例1.利用完全平方式計算1.102。
    計算:
    1.(a+b+c)。
    2.(a+b)師生共同分析:對于1要把多項式完全平方轉(zhuǎn)化為二項式的完全平方,要使用加法結(jié)合律,為使用完全平方公式創(chuàng)造條件。如(a+b+c)=[a+(b+c)]對于(2)可化為(a+b)=(a+b)(a+b).學(xué)生動筆:在練習(xí)本上解答,并與同伴交流你的做法。學(xué)生敘述。
    p381。
    本節(jié)課進(jìn)一步學(xué)習(xí)了完全平方公式,在應(yīng)用此公式運算時注意以下幾點。1.使用完全平方公式首先要熟記公式和公式的特征,不能出現(xiàn)(ab)=ab的錯誤,或(ab)=aab+b(漏掉2倍)等錯誤。2.要能根據(jù)公式的特征及題目的特征靈活選擇適當(dāng)?shù)墓接嬎恪?.用加法結(jié)合律,可為使用公式創(chuàng)造了條件。利用了這種方法,可以把多項式的完全平方轉(zhuǎn)化為二項式的完全平方。
    課本習(xí)題1.14p381、2、3.
    1.9整式的除法第一課時單項式除以單項式教學(xué)目標(biāo)1.經(jīng)歷探索單項式除法的法則過程,了解單項式除法的意義。
    2.理解單項式除法法則,會進(jìn)行單項式除以單項式運算。重點、難點重點:單項式除以單項式的運算。難點:單項式除以單項式法則的理解。