數(shù)學教案-多邊形的內(nèi)角和(優(yōu)質(zhì)20篇)

字號:

    教案是教學活動中對教學內(nèi)容、教學目標、教學過程等進行詳細規(guī)劃和安排的教學工具。編寫教案時要注重培養(yǎng)學生的學習興趣和主動性。教案是教學活動的詳細設(shè)計與組織安排,可以幫助教師有效地傳授知識和培養(yǎng)學生能力。在編寫教案時,教師需要根據(jù)學生的實際情況選擇適合的教學方法和手段。下面是一些經(jīng)過教師反復實踐、不斷改進的教案,希望能夠為你提供一些啟示。
    數(shù)學教案-多邊形的內(nèi)角和篇一
    (1)知識結(jié)構(gòu):
    (2)重點和難點分析:
    重點:四邊形的有關(guān)概念及內(nèi)角和定理。因為四邊形的有關(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識,對后繼知識的學習起著重要的作用,數(shù)學教案-多邊形的內(nèi)角和。
    難點:四邊形的概念及四邊形不穩(wěn)定性的理解和應(yīng)用。在前面講解三角形的概念時,因為三角形的三個頂點確定一個平面,所以三個頂點總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個條件,這幾個字的意思學生不好理解,所以是難點。
    2.教法建議。
    (1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個課件,使學生認識到這些四邊形都是常見圖形,研究它們具有實際應(yīng)用意義,從而激發(fā)學生學習數(shù)學的興趣。
    (2)本節(jié)的教學,要以三角形為基礎(chǔ),可以仿照三角形,通過類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點、內(nèi)角、外角、內(nèi)角和、外角和、周長等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對比著指給學生看,讓學生明確這些概念。
    (3)因為在三角形中沒有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決。結(jié)合圖形,讓學生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學生加深對對角線的作用的認識。
    (4)本節(jié)用到的數(shù)學思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識時要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對這兩種數(shù)學思想方法進行總結(jié),使學生明白碰到復雜的、未知的問題要轉(zhuǎn)化為簡單的、已知的問題,初中數(shù)學教案《數(shù)學教案-多邊形的內(nèi)角和》。
    教學目標:
    1.使學生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和定理;
    2.通過引導學生觀察氣象站的實例,培養(yǎng)學生從具體事物中抽象出幾何圖形的能力;
    3.通過推導四邊形內(nèi)角和定理,對學生滲透化歸轉(zhuǎn)化的數(shù)學思想;
    4.講解四邊形的有關(guān)概念時,聯(lián)系三角形的有關(guān)概念向?qū)W生滲透類比思想。
    教學重點:
    教學難點:
    四邊形的概念。
    教學過程:
    (一)復習。
    在小學里,我們學過長方形、正方形、平行四邊形和梯形的有關(guān)知識。請同學們回憶一下這些圖形的概念。找學生說出四種幾何圖形的概念,教師作評價。
    (二)提出問題,引入新課。
    利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件。(先看畫面一)。
    問題:你能類比三角形的概念,說出四邊形的概念嗎?
    (三)理解概念。
    1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形。
    在定義中要強調(diào)“在同一平面內(nèi)”這個條件,或為學生稍微說明一下。其次,要給學生講清楚“首尾”和“順次”的含義。
    2.類比三角形的邊、頂點、內(nèi)角、外角的概念,找學生答出四邊形的邊、頂點、內(nèi)角、外交的概念。
    3.四邊形的記法:對照圖形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點的順序書寫,可以按順時針或逆時針的順序。
    練習:課本124頁1、2題。
    4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學生會辨認一個四邊形是不是凸四邊形就可以了。
    5.四邊形的對角線:
    (四)四邊形的內(nèi)角和定理。
    定理:四邊形的內(nèi)角和等于.
    注意:在研究四邊形時,常常通過作它的對角線,把關(guān)于四邊形的問題化成關(guān)于三角形的問題來解決。
    (五)應(yīng)用、反思。
    例1已知:如圖,直線,垂足為b,直線,垂足為c.
    求證:(1);(2)。
    證明:(1)(四邊形的內(nèi)角和等于),
    練習:
    1.課本124頁3題。
    小結(jié):
    知識:四邊形的有關(guān)概念及其內(nèi)角和定理。
    能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法。
    作業(yè):課本130頁2、3、4題。
    數(shù)學教案-多邊形的內(nèi)角和篇二
    (1)知識結(jié)構(gòu):
    (2)重點和難點分析:
    重點:四邊形的有關(guān)概念及內(nèi)角和定理.因為四邊形的有關(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識,對后繼知識的學習起著重要的作用,數(shù)學教案-多邊形的內(nèi)角和。
    難點:四邊形的概念及四邊形不穩(wěn)定性的理解和應(yīng)用.在前面講解三角形的概念時,因為三角形的三個頂點確定一個平面,所以三個頂點總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個條件,這幾個字的意思學生不好理解,所以是難點。
    2.教法建議。
    (1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個課件,使學生認識到這些四邊形都是常見圖形,研究它們具有實際應(yīng)用意義,從而激發(fā)學生學習數(shù)學的興趣。
    (2)本節(jié)的教學,要以三角形為基礎(chǔ),可以仿照三角形,通過類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點、內(nèi)角、外角、內(nèi)角和、外角和、周長等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對比著指給學生看,讓學生明確這些概念。
    (3)因為在三角形中沒有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決.結(jié)合圖形,讓學生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學生加深對對角線的作用的認識。
    (4)本節(jié)用到的數(shù)學思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識時要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對這兩種數(shù)學思想方法進行總結(jié),使學生明白碰到復雜的、未知的問題要轉(zhuǎn)化為簡單的、已知的問題,初中數(shù)學教案《數(shù)學教案-多邊形的內(nèi)角和》。
    教學目標:
    1.使學生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和定理;
    2.通過引導學生觀察氣象站的實例,培養(yǎng)學生從具體事物中抽象出幾何圖形的能力;
    3.通過推導四邊形內(nèi)角和定理,對學生滲透化歸轉(zhuǎn)化的數(shù)學思想;
    4.講解四邊形的`有關(guān)概念時,聯(lián)系三角形的有關(guān)概念向?qū)W生滲透類比思想.
    教學重點:
    教學難點:
    教學過程:
    (一)復習。
    在小學里,我們學過長方形、正方形、平行四邊形和梯形的有關(guān)知識.請同學們回憶一下這些圖形的概念.找學生說出四種幾何圖形的概念,教師作評價.
    (二)提出問題,引入新課。
    利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件.(先看畫面一)。
    問題:你能類比三角形的概念,說出四邊形的概念嗎?
    (三)理解概念。
    1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.
    在定義中要強調(diào)“在同一平面內(nèi)”這個條件,或為學生稍微說明一下.其次,要給學生講清楚“首尾”和“順次”的含義.
    2.類比三角形的邊、頂點、內(nèi)角、外角的概念,找學生答出四邊形的邊、頂點、內(nèi)角、外交的概念.
    3.四邊形的記法:對照圖形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點的順序書寫,可以按順時針或逆時針的順序.
    練習:課本124頁1、2題.
    4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學生會辨認一個四邊形是不是凸四邊形就可以了.
    注意:在研究四邊形時,常常通過作它的對角線,把關(guān)于四邊形的問題化成關(guān)于三角形的問題來解決.
    (五)應(yīng)用、反思。
    例1已知:如圖,直線,垂足為b,直線,垂足為c.
    求證:(1);(2)。
    練習:
    1.課本124頁3題.
    小結(jié):
    能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法.
    作業(yè):課本130頁2、3、4題.
    數(shù)學教案-多邊形的內(nèi)角和篇三
    過程與方法目標:通過多邊形內(nèi)角和公式的推導過程,提高邏輯思維能力。
    情感態(tài)度與價值觀目標:養(yǎng)成實事求是的科學態(tài)度。
    教學重點:多邊形的內(nèi)角和公式
    教學難點:多邊形內(nèi)角和公式
    講解法、練習法、分小組討論法
    結(jié)合新課程標準及以上的分析,我將我的教學過程設(shè)置為以下五個教學環(huán)節(jié):導入新知、
    生成新知、深化新知、鞏固新知、小結(jié)作業(yè)。
    1. 導入新知
    首先是導入新知環(huán)節(jié),我會引導學生回顧三角形的內(nèi)角和,緊接著提出問題:四邊形的
    內(nèi)角和是多少?五邊形的內(nèi)角和是多少?六邊形的內(nèi)角和是多少?引發(fā)學生思考,由此引出本節(jié)課的課題:多邊形的內(nèi)角和(板書)。
    通過提問的方式幫助學生回顧舊知識的同時,引導學生思考,也激發(fā)學生的求知欲,為本節(jié)課的多邊形內(nèi)角和的學習奠定了基礎(chǔ)。
    2. 生成新知
    接下來,進入生成新知環(huán)節(jié),我會引導學生將四邊形分成兩個三角形來求內(nèi)角和,由此
    得出四邊形的內(nèi)角和是2個三角形的內(nèi)角和,即2*180=360,那同樣的引導學生將五邊形,六邊形分別從同一個頂點出發(fā)劃分為3個4個三角形,從而得出五邊形的內(nèi)角和為3*180=540,然后,讓學生前后桌四個人為一個小組,五分鐘時間,歸納n變形的內(nèi)角和是多少,討論結(jié)束后,找一個小組來回答他們討論的結(jié)果。由此生成我們的新知識:多邊形的內(nèi)角和公式180*(n-2)。
    驗證:七邊形驗證
    在本環(huán)節(jié)中通過學生自主學習歸納總結(jié)得出多邊形的內(nèi)角和公式,充分發(fā)揮了他們的自主探討能力,提升邏輯思維能力。
    3. 深化新知
    再次是深化新知環(huán)節(jié),在本環(huán)節(jié),我會引導學生思考一下有沒有其他的將多邊形分隔求
    內(nèi)角和的方法,引導學生思考,可不可以將六邊形從多個頂點出發(fā),然后用公式驗證一下我們這樣分割可行不可行。這時候會發(fā)現(xiàn)有的分割可行有的分割不可行,在這個時候給他們講解為什么不可行為什么可行,以此來引出分割時對角線不能相交,從而強調(diào)我們分隔的一個原則。
    本環(huán)節(jié)的設(shè)計主要是對多變形內(nèi)角和的一個深入了解,給學生一個內(nèi)化的過程,同時引導學生不要將知識學死了,要活學活用,從多個角度來思考問題,解決問題。
    4. 鞏固提高
    我們說數(shù)學是來源于生活,服務(wù)于生活的一門學科,所以在接下來的鞏固提高環(huán)節(jié),
    我講引領(lǐng)學生用我們所學過的多邊形的內(nèi)角和公式來解決生活中的實際問題。
    我會在ppt上播放一個蜂巢的圖片,然后提出一個問題,蜂房是幾邊形?每個蜂房的內(nèi)角和是多少?由此來引發(fā)學生思考運用我們本節(jié)課所學習的知識來解決問題,對多邊形的內(nèi)角和公式進一步鞏固提高。
    5. 小結(jié)作業(yè)
    先讓學生思考一下我們本節(jié)課學習了什么知識點,然后找一位同學來總結(jié)一下我們本節(jié)課所學習的知識點。對本節(jié)課學習內(nèi)容有了一個回顧之后,讓學生做一下練習題1、2題,以此來進一步提升學生運用知識的能力。
    數(shù)學教案-多邊形的內(nèi)角和篇四
    設(shè)計理念:。
    一教材分析:。
    從教材的編排上,本節(jié)課作為第三章的第三節(jié)。從三角形的內(nèi)角和到四邊形的內(nèi)角和至多邊形的內(nèi)角和,環(huán)環(huán)相扣。同時,對今后學習的鑲嵌,正多邊形和圓等都是非常重要的。知識的聯(lián)系性比較強。因此,本節(jié)課具在承上啟下的作用,符合學生的認知規(guī)律。再從本節(jié)的教學理念看,編者從簡單的幾何圖形入手,蘊含了把復雜問題轉(zhuǎn)化為簡單問題,化未知為已知的思想。充分體現(xiàn)了人人學有價值的數(shù)學,這一新課程標準精神。
    二、學情分析:。
    三、教學目標的確定:。
    3、通過探索多邊形內(nèi)角和公式,讓學生逐步從實驗幾何過渡到論證幾何。
    四、重難點的確立:。
    既然是多邊形內(nèi)角和具有承上啟下的作用。因此確定本節(jié)課的重點是探究多邊形的內(nèi)角和的公式。由于七年級學生初學幾何,所以學生在幾何的邏輯推理上感到有難度。所以我確定本節(jié)課的難點是探究多邊形內(nèi)角和公式推導的基本思想,而解決問題的關(guān)鍵是教師恰當?shù)囊龑А?BR>    數(shù)學教案-多邊形的內(nèi)角和篇五
    知識與技能:掌握多邊形內(nèi)角和定理,進一步了解轉(zhuǎn)化的數(shù)學思想。
    重點:多邊形內(nèi)角和定理的探索和應(yīng)用。
    教學難點:邊形定義的理解;多邊形內(nèi)角和公式的推導;轉(zhuǎn)化的數(shù)學思維方法的滲透.。
    教學過程。
    第一環(huán)節(jié)創(chuàng)設(shè)現(xiàn)實情境,提出問題,引入新(3分鐘,學生思考問題,入)。
    1.多媒體展示蜂窩,教師結(jié)合圖片讓學生發(fā)現(xiàn)生活中無處不在的多邊形.。
    2.工人師傅鋸桌面:一個四邊形的桌面,用鋸子鋸掉一個角,還剩幾個角?
    第二環(huán)節(jié)概念形成(5分鐘,學生理解定義)。
    第三環(huán)節(jié)實驗探究(12分鐘,學生動手操作,探究內(nèi)角和)。
    (以四人小組為單位展開探究活動)。
    活動一:利用四邊形探索四邊形內(nèi)角和。
    要求:先獨立思考再小組合作交流完成.)。
    (師巡視,了解學生探索進程并適當點撥.)。
    (生思考后交流,把不同的方案在紙上完成.)。
    ……(組間交流,教師展示幾種方法)。
    進而引導學生得出:我們是把四邊形的問題轉(zhuǎn)化成三角形,再由三角形內(nèi)角和為180°,求出四邊形內(nèi)角和為360°,從而使問題得到解決!進一步提出新的探索活動。
    活動二:探索五邊形內(nèi)角和。
    (要求:獨立思考,自主完成.)。
    第四環(huán)節(jié)思維升華(5分鐘,教師引導學生進行推算)。
    教學過程:
    探索n邊形內(nèi)角和,并試著說明理由。
    (結(jié)合出示的圖表從代數(shù)角度猜測公式,并從幾何意義加以解讀)。
    n邊形的內(nèi)角和=(n—2)180°。
    正n邊形的一個內(nèi)角==。
    第五環(huán)節(jié)能力拓展(12分鐘,學生搶答)。
    搶答題:
    1.正八邊形的內(nèi)角和為_______.
    3.一個多邊形每個內(nèi)角的度數(shù)是150°,則這個多邊形的邊數(shù)是_______.
    應(yīng)用發(fā)散:
    第六環(huán)節(jié)時小結(jié):(3分鐘,學生填表)。
    第七環(huán)節(jié)布置作業(yè):習題4、10。
    b組(中等生)1。
    c組(后三分之一生)1。
    教學反思:
    數(shù)學教案-多邊形的內(nèi)角和篇六
    (1)知識結(jié)構(gòu):
    (2)重點和難點分析:
    重點:四邊形的有關(guān)概念及內(nèi)角和定理.因為四邊形的有關(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識,對后繼知識的學習起著重要的作用。
    難點:四邊形的概念及四邊形不穩(wěn)定性的理解和應(yīng)用.在前面講解三角形的概念時,因為三角形的三個頂點確定一個平面,所以三個頂點總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個條件,這幾個字的意思學生不好理解,所以是難點。
    2.教法建議。
    (1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個課件,使學生認識到這些四邊形都是常見圖形,研究它們具有實際應(yīng)用意義,從而激發(fā)學生學習數(shù)學的興趣。
    (2)本節(jié)的教學,要以三角形為基礎(chǔ),可以仿照三角形,通過類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點、內(nèi)角、外角、內(nèi)角和、外角和、周長等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對比著指給學生看,讓學生明確這些概念。
    (3)因為在三角形中沒有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決.結(jié)合圖形,讓學生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學生加深對對角線的作用的認識。
    (4)本節(jié)用到的`數(shù)學思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識時要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對這兩種數(shù)學思想方法進行總結(jié),使學生明白碰到復雜的、未知的問題要轉(zhuǎn)化為簡單的、已知的問題。
    教學目標:
    2.通過引導學生觀察氣象站的實例,培養(yǎng)學生從具體事物中抽象出幾何圖形的能力;。
    3.通過推導四邊形內(nèi)角和定理,對學生滲透化歸轉(zhuǎn)化的數(shù)學思想;。
    4.講解四邊形的有關(guān)概念時,聯(lián)系三角形的有關(guān)概念向?qū)W生滲透類比思想.
    教學重點:
    教學難點:
    四邊形的概念。
    教學過程:
    (一)復習。
    在小學里,我們學過長方形、正方形、平行四邊形和梯形的有關(guān)知識.請同學們回憶一下這些圖形的概念.找學生說出四種幾何圖形的概念,教師作評價.
    (二)提出問題,引入新課。
    利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件.(先看畫面一)。
    問題:你能類比三角形的概念,說出四邊形的概念嗎?
    (三)理解概念。
    1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.
    在定義中要強調(diào)“在同一平面內(nèi)”這個條件,或為學生稍微說明一下.其次,要給學生講清楚“首尾”和“順次”的含義.
    2.類比三角形的邊、頂點、內(nèi)角、外角的概念,找學生答出四邊形的邊、頂點、內(nèi)角、外交的概念.
    3.四邊形的記法:對照圖形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點的順序書寫,可以按順時針或逆時針的順序.
    練習:課本124頁1、2題.
    4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學生會辨認一個四邊形是不是凸四邊形就可以了.
    5.四邊形的對角線:
    注意:在研究四邊形時,常常通過作它的對角線,把關(guān)于四邊形的問題化成關(guān)于三角形的問題來解決.
    (五)應(yīng)用、反思。
    例1已知:如圖,直線,垂足為b,直線,垂足為c.
    求證:(1);(2)。
    (2)。
    練習:
    1.課本124頁3題.
    小結(jié):
    能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法.
    作業(yè):課本130頁2、3、4題.
    數(shù)學教案-多邊形的內(nèi)角和篇七
    完成《多邊形的內(nèi)角和》教學之后,學生很自然地就會想到對于多邊形的情況如何。為了體現(xiàn)課堂以學生為主,培養(yǎng)學生自主探究的能力,在課前的教學設(shè)計中盡量圍繞學生展開。如:采取了小組合作學習、組與組之間交流等形式。雖然想法上有此意圖,但在具體的實施過程中還是暴露出了很多問題,有事先沒預計到的,也有想體現(xiàn)但沒體現(xiàn)完整的。經(jīng)過課后反思及老教師們的指點,主要表現(xiàn)在:
    (1)較多的著眼于課堂形式的多樣化及學生能力(如:合作、探究、交流等)的培養(yǎng),而忽視了教學中最重要的知識點的落實。學生練的機會不多,僅有編制習題解答這一部分,且對學生來說要求較高,教師在編題前可先讓學生解題,給學生搭好階梯,使其不至于感到突然。
    (2)小組討論可以說是新教材框架中的一個重要部分,教師事先一定要有詳細的計劃。這也是本堂課暴露缺陷較多的環(huán)節(jié)。比如:組員的設(shè)置(七、八人一組加上發(fā)下的表格較少使得討論未能有效的開展),以4、5人為一組較為合適,且要分工明確,如誰記錄,誰發(fā)言等等,避免某些小組成員流離于合作之外。教師還應(yīng)精心策劃:討論如何有效地開展;時間多長;采取何種討論方法;教師在討論過程中又該擔當何種角色等。
    (3)在小組交流過程中學生的發(fā)言過分地注重于探索的結(jié)果,而忽視了學生探索過程的展示。同時教師有些總結(jié)性的話,限制了學生的思維,不能最大限度的'發(fā)揮學生自主探究的能力。
    (4)教師在教學過程中對學生的評價較為單一,肯定不夠及時,表揚不夠熱情,比如當最后一個平常表現(xiàn)較為一般的學生有此創(chuàng)意時,教師就應(yīng)大加贊揚,從而也能激發(fā)課堂氣氛。
    將本文的word文檔下載到電腦,方便收藏和打印。
    數(shù)學教案-多邊形的內(nèi)角和篇八
    過程與方法目標:通過多邊形內(nèi)角和公式的推導過程,提高邏輯思維能力。
    情感態(tài)度與價值觀目標:養(yǎng)成實事求是的科學態(tài)度。
    講解法、練習法、分小組討論法。
    結(jié)合新課程標準及以上的分析,我將我的教學過程設(shè)置為以下五個教學環(huán)節(jié):導入新知、
    生成新知、深化新知、鞏固新知、小結(jié)作業(yè)。
    1.導入新知。
    首先是導入新知環(huán)節(jié),我會引導學生回顧三角形的內(nèi)角和,緊接著提出問題:四邊形的。
    內(nèi)角和是多少?五邊形的內(nèi)角和是多少?六邊形的內(nèi)角和是多少?引發(fā)學生思考,由此引出本節(jié)課的課題:多邊形的內(nèi)角和(板書)。
    通過提問的方式幫助學生回顧舊知識的同時,引導學生思考,也激發(fā)學生的求知欲,為本節(jié)課的多邊形內(nèi)角和的學習奠定了基礎(chǔ)。
    2.生成新知。
    接下來,進入生成新知環(huán)節(jié),我會引導學生將四邊形分成兩個三角形來求內(nèi)角和,由此。
    得出四邊形的內(nèi)角和是2個三角形的內(nèi)角和,即2*180=360,那同樣的引導學生將五邊形,六邊形分別從同一個頂點出發(fā)劃分為3個4個三角形,從而得出五邊形的內(nèi)角和為3*180=540,然后,讓學生前后桌四個人為一個小組,五分鐘時間,歸納n變形的內(nèi)角和是多少,討論結(jié)束后,找一個小組來回答他們討論的結(jié)果。由此生成我們的新知識:多邊形的內(nèi)角和公式180*(n-2)。
    驗證:七邊形驗證。
    在本環(huán)節(jié)中通過學生自主學習歸納總結(jié)得出多邊形的內(nèi)角和公式,充分發(fā)揮了他們的自主探討能力,提升邏輯思維能力。
    3.深化新知。
    再次是深化新知環(huán)節(jié),在本環(huán)節(jié),我會引導學生思考一下有沒有其他的將多邊形分隔求。
    內(nèi)角和的方法,引導學生思考,可不可以將六邊形從多個頂點出發(fā),然后用公式驗證一下我們這樣分割可行不可行。這時候會發(fā)現(xiàn)有的分割可行有的分割不可行,在這個時候給他們講解為什么不可行為什么可行,以此來引出分割時對角線不能相交,從而強調(diào)我們分隔的一個原則。
    本環(huán)節(jié)的設(shè)計主要是對多變形內(nèi)角和的一個深入了解,給學生一個內(nèi)化的過程,同時引導學生不要將知識學死了,要活學活用,從多個角度來思考問題,解決問題。
    4.鞏固提高。
    我們說數(shù)學是來源于生活,服務(wù)于生活的一門學科,所以在接下來的鞏固提高環(huán)節(jié),
    我講引領(lǐng)學生用我們所學過的多邊形的內(nèi)角和公式來解決生活中的實際問題。
    我會在ppt上播放一個蜂巢的圖片,然后提出一個問題,蜂房是幾邊形?每個蜂房的內(nèi)角和是多少?由此來引發(fā)學生思考運用我們本節(jié)課所學習的知識來解決問題,對多邊形的內(nèi)角和公式進一步鞏固提高。
    5.小結(jié)作業(yè)。
    先讓學生思考一下我們本節(jié)課學習了什么知識點,然后找一位同學來總結(jié)一下我們本節(jié)課所學習的知識點。對本節(jié)課學習內(nèi)容有了一個回顧之后,讓學生做一下練習題1、2題,以此來進一步提升學生運用知識的能力。
    數(shù)學教案-多邊形的內(nèi)角和篇九
    難點:探索多邊形內(nèi)角和時,如何把多邊形轉(zhuǎn)化成三角形。
    四、教學方法:引導發(fā)現(xiàn)法、討論法。
    五、教具、學具。
    教具:多媒體課件。
    學具:三角板、量角器。
    六、教學媒體:大屏幕、實物投影。
    七、教學過程:
    (一)創(chuàng)設(shè)情境,設(shè)疑激思。
    師:大家都知道三角形的內(nèi)角和是180?,那么四邊形的內(nèi)角和,你知道嗎?
    在獨立探索的基礎(chǔ)上,學生分組交流與研討,并匯總解決問題的方法。
    方法一:用量角器量出四個角的度數(shù),然后把四個角加起來,發(fā)現(xiàn)內(nèi)角和是360?。
    方法二:把兩個三角形紙板拼在一起構(gòu)成四邊形,發(fā)現(xiàn)兩個三角形內(nèi)角和相加是360?。
    接下來,教師在方法二的基礎(chǔ)上引導學生利用作輔助線的方法,連結(jié)四邊形的對角線,把一個四邊形轉(zhuǎn)化成兩個三角形。
    師:你知道五邊形的內(nèi)角和嗎?六邊形呢?十邊形呢?你是怎樣得到的?
    學生先獨立思考每個問題再分組討論。
    關(guān)注:(1)學生能否類比四邊形的方式解決問題得出正確的結(jié)論。
    (2)學生能否采用不同的方法。
    方法1:把五邊形分成三個三角形,3個180?的和是540?。
    方法2:從五邊形內(nèi)部一點出發(fā),把五邊形分成五個三角形,然后用5個180?的和減去一個周角360?。結(jié)果得540?。
    方法3:從五邊形一邊上任意一點出發(fā)把五邊形分成四個三角形,然后用4個180?的和減去一個平角180?,結(jié)果得540?。
    方法4:把五邊形分成一個三角形和一個四邊形,然后用180?加上360?,結(jié)果得540?。
    師:你真聰明!做到了學以致用。
    交流后,學生運用幾何畫板演示并驗證得到的方法。
    得到五邊形的內(nèi)角和之后,同學們又認真地討論起六邊形、十邊形的內(nèi)角和。類比四邊形、五邊形的討論方法最終得出,六邊形內(nèi)角和是720?,十邊形內(nèi)角和是1440?。
    (二)引申思考,培養(yǎng)創(chuàng)新。
    (3)從多邊形一個頂點引的對角線分三角形的個數(shù)與多邊形邊數(shù)的關(guān)系?
    學生結(jié)合思考題進行討論,并把討論后的結(jié)果進行交流。
    發(fā)現(xiàn)1:四邊形內(nèi)角和是2個180?的和,五邊形內(nèi)角和是3個180?的'和,六邊形內(nèi)角和是4個180?的和,十邊形內(nèi)角和是8個180?的和。
    發(fā)現(xiàn)3:一個n邊形從一個頂點引出的對角線分三角形的個數(shù)與邊數(shù)n存在(n-2)的關(guān)系。
    (三)實際應(yīng)用,優(yōu)勢互補。
    (2)一個多邊形的內(nèi)角和是1440?,且每個內(nèi)角都相等,則每個內(nèi)角的度數(shù)是()。
    (四)概括存儲。
    學生自己歸納總結(jié):
    2、運用轉(zhuǎn)化思想解決數(shù)學問題。
    3、用數(shù)形結(jié)合的思想解決問題。
    (五)作業(yè):練習冊第93頁1、2、3。
    八、教學反思:
    1、教的轉(zhuǎn)變。
    本節(jié)課教師的角色從知識的傳授者轉(zhuǎn)變?yōu)閷W生學習的組織者、引導者、合作者與共同研究者,在引導學生畫圖、測量發(fā)現(xiàn)結(jié)論后,利用幾何畫板直觀地展示,激發(fā)學生自覺探究數(shù)學問題,體驗發(fā)現(xiàn)的樂趣。
    2、學的轉(zhuǎn)變。
    學生的角色從學會轉(zhuǎn)變?yōu)闀W。本節(jié)課學生不是停留在學會課本知識層面,而是站在研究者的角度深入其境。
    3、課堂氛圍的轉(zhuǎn)變。
    整節(jié)課以“流暢、開放、合作、‘隱’導”為基本特征,教師對學生的思維減少干預,教學過程呈現(xiàn)一種比較流暢的特征。整節(jié)課學生與學生,學生與教師之間以“對話”、“討論”為出發(fā)點,以互助合作為手段,以解決問題為目的,讓學生在一個比較寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現(xiàn)的價值。
    數(shù)學教案-多邊形的內(nèi)角和篇十
    (1)知識結(jié)構(gòu):
    (2)重點和難點分析:
    重點:四邊形的有關(guān)概念及內(nèi)角和定理.因為四邊形的有關(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識,對后繼知識的學習起著重要的作用,數(shù)學教案-多邊形的內(nèi)角和。
    難點:四邊形的概念及四邊形不穩(wěn)定性的理解和應(yīng)用.在前面講解三角形的概念時,因為三角形的三個頂點確定一個平面,所以三個頂點總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個條件,這幾個字的意思學生不好理解,所以是難點。
    2.教法建議
    (1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個課件,使學生認識到這些四邊形都是常見圖形,研究它們具有實際應(yīng)用意義,從而激發(fā)學生學習數(shù)學的興趣。
    (2)本節(jié)的教學,要以三角形為基礎(chǔ),可以仿照三角形,通過類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點、內(nèi)角、外角、內(nèi)角和、外角和、周長等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對比著指給學生看,讓學生明確這些概念。
    (3)因為在三角形中沒有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決.結(jié)合圖形,讓學生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學生加深對對角線的作用的認識。
    (4)本節(jié)用到的數(shù)學思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識時要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對這兩種數(shù)學思想方法進行總結(jié),使學生明白碰到復雜的、未知的問題要轉(zhuǎn)化為簡單的、已知的問題,初中數(shù)學教案《數(shù)學教案-多邊形的內(nèi)角和》。
    教學目標:
    1.使學生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和定理;
    2.通過引導學生觀察氣象站的實例,培養(yǎng)學生從具體事物中抽象出幾何圖形的能力;
    3.通過推導四邊形內(nèi)角和定理,對學生滲透化歸轉(zhuǎn)化的數(shù)學思想;
    4.講解四邊形的有關(guān)概念時,聯(lián)系三角形的有關(guān)概念向?qū)W生滲透類比思想.
    教學重點:
    四邊形的內(nèi)角和定理.
    教學難點:
    四邊形的概念
    教學過程:
    (一)復習
    在小學里,我們學過長方形、正方形、平行四邊形和梯形的有關(guān)知識.請同學們回憶一下這些圖形的概念.找學生說出四種幾何圖形的概念,教師作評價.
    (二)提出問題,引入新課
    利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件.(先看畫面一)
    問題:你能類比三角形的概念,說出四邊形的概念嗎?
    (三)理解概念
    1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.
    在定義中要強調(diào)“在同一平面內(nèi)”這個條件,或為學生稍微說明一下.其次,要給學生講清楚“首尾”和“順次”的含義.
    2.類比三角形的邊、頂點、內(nèi)角、外角的概念,找學生答出四邊形的邊、頂點、內(nèi)角、外交的概念.
    3.四邊形的記法:對照圖形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點的順序書寫,可以按順時針或逆時針的順序.
    練習:課本124頁1、2題.
    4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學生會辨認一個四邊形是不是凸四邊形就可以了.
    5.四邊形的對角線:
    (四)四邊形的內(nèi)角和定理
    定理:四邊形的內(nèi)角和等于 .
    注意:在研究四邊形時,常常通過作它的對角線,把關(guān)于四邊形的問題化成關(guān)于三角形的問題來解決.
    (五)應(yīng)用、反思
    例1 已知:如圖,直線 ,垂足為b, 直線 , 垂足為c.
    求證:(1) ;(2)
    證明:(1) (四邊形的內(nèi)角和等于 ),
    練習:
    1.課本124頁3題.
    小結(jié):
    知識:四邊形的有關(guān)概念及其內(nèi)角和定理.
    能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法.
    作業(yè): 課本130頁 2、3、4題.
    數(shù)學教案-多邊形的內(nèi)角和篇十一
    《探索多邊形的內(nèi)角和》一課終于上完了,然而對這一課的思考才剛剛開始,正如周夢莉校長所說,我們的目標不是這一課本身,而是對于這一課的研究給我們數(shù)學教學的一點啟發(fā)。
    有幸與實驗小學趙麗老師同時選中《多邊形的內(nèi)角和》這一課,但我們從不同角度不同方式對它進行了解讀。20世紀90年代,因為農(nóng)村小學學生人數(shù)的急劇減少,我們學校在課堂上嘗試性的進行了分層異步教學,在同一節(jié)課中,根據(jù)學生認知水平差異,把學生分成a,b兩組,在組內(nèi)又依托知識水平相近原則,把3,4名學生分為一個小組,通常采用合——分——合的模式進行教學,即,當a組同學教學時,b組自學,反之亦然,經(jīng)過與普通班的對比研究,發(fā)現(xiàn)復式班學生在學習效果上有著明顯的成效?;谶@一基礎(chǔ),我采用分層的模式來進行多邊形的內(nèi)角和的教學,這一嘗試,讓我對自己的.數(shù)學教學有了如下反思:
    1,以經(jīng)驗為基礎(chǔ),讓學生得到不同的發(fā)展。
    基于學生的認知經(jīng)驗及活動經(jīng)驗,對學生進行分組,以期達到不同的學生在數(shù)學上得到不同程度的發(fā)展的目標,學習能力較強的同學要能吃飽,學習能力較弱的同學要在原有基礎(chǔ)上有所進步。在實際教學中,對于a組和b組的學生,除了在教學形式上有所區(qū)別外,a組教學為主,b組自學為主,我在教學時間的分配上對ab組并沒有顯著區(qū)分,在以后的嘗試探索中,我應(yīng)對a組加以更細致的教學指導,對b組更大膽的放手,讓學生上臺說,做,教,減少b組的教學時間。
    2,勇于放手,培養(yǎng)學生自學的能力。
    在一開始設(shè)計b組的學習單時,即使b組同學學習能力較強,但出于對學生的擔憂,擔心學生想不到用分一分的方法,在學習單上,我引導學生,多邊形能夠分成幾個三角形,內(nèi)角和怎么算。而周校長建議我,是否能給學生更多的空間,把“小問題”變?yōu)椤按髥栴}”,直接提問學生,多邊形的內(nèi)角和是多少,讓學生去嘗試探索各種方法,而不僅局限于轉(zhuǎn)化為三角形內(nèi)角和的方法。在后來的實際教學中,采用了“大問題”的提問方式,我驚喜的發(fā)現(xiàn),學生的探究自學能力比我預想的出色許多。
    3,細節(jié)入手,培養(yǎng)學生良好習慣。
    小學數(shù)學良好習慣的培養(yǎng)不僅對學生自身的數(shù)學學習有所裨益,對課堂教效果的影響更是尤為明顯。在分層教學的模式中,為避免ab組互相間的干擾,必須在課堂上對每組學生提出明確的要求,課前乃至平時都要對學生的學習習慣進行培養(yǎng),這樣才能讓我們的數(shù)學老師對課堂全局的把握更加深刻,才能夠讓數(shù)學課堂井然有序,數(shù)學教學效果得到最大程度的保證。
    “授人以魚,不如授人以漁?!蔽覀兊臄?shù)學分層教學不光是為了學生掌握某一定的知識,而是讓學生在不同的學習方式中不斷感悟體會,尋找適合自己的學習方法,最終以得到不同程度的發(fā)展。
    數(shù)學教案-多邊形的內(nèi)角和篇十二
    二、教學目標。
    2、數(shù)學思考:通過把多邊形轉(zhuǎn)化成三角形體會轉(zhuǎn)化思想在幾何中的運用,同時讓學生體會從特殊到一般的認識問題的方法。
    3、解決問題:通過探索多邊形內(nèi)角和公式,嘗試從不同角度尋求解決問題的方法并能有效地解決問題。
    4、情感態(tài)度目標:通過猜想、推理活動感受數(shù)學活動充滿著探索以及數(shù)學結(jié)論的確定性,提高學生學習熱情。
    三、教學重、難點。
    難點:探索多邊形內(nèi)角和時,如何把多邊形轉(zhuǎn)化成三角形。
    四、教學方法:引導發(fā)現(xiàn)法、討論法。
    五、教具、學具。
    教具:多媒體課件。
    學具:三角板、量角器。
    六、教學媒體:大屏幕、實物投影。
    七、教學過程:
    (一)創(chuàng)設(shè)情境,設(shè)疑激思。
    師:大家都知道三角形的內(nèi)角和是180o,那么四邊形的內(nèi)角和,你知道嗎?
    在獨立探索的基礎(chǔ)上,學生分組交流與研討,并匯總解決問題的方法。
    方法一:用量角器量出四個角的度數(shù),然后把四個角加起來,發(fā)現(xiàn)內(nèi)角和是360o。
    方法二:把兩個三角形紙板拼在一起構(gòu)成四邊形,發(fā)現(xiàn)兩個三角形內(nèi)角和相加是360o。
    接下來,教師在方法二的基礎(chǔ)上引導學生利用作輔助線的方法,連結(jié)四邊形的對角線,把一個四邊形轉(zhuǎn)化成兩個三角形。
    師:你知道五邊形的內(nèi)角和嗎?六邊形呢?十邊形呢?你是怎樣得到的?
    學生先獨立思考每個問題再分組討論。
    關(guān)注:(1)學生能否類比四邊形的方式解決問題得出正確的結(jié)論。
    (2)學生能否采用不同的方法。
    方法1:把五邊形分成三個三角形,3個180o的和是540o。
    方法2:從五邊形內(nèi)部一點出發(fā),把五邊形分成五個三角形,然后用5個180o的和減去一個周角360o。結(jié)果得540o。
    方法3:從五邊形一邊上任意一點出發(fā)把五邊形分成四個三角形,然后用4個180o的和減去一個平角180o,結(jié)果得540o。
    方法4:把五邊形分成一個三角形和一個四邊形,然后用180o加上360o,結(jié)果得540o。
    交流后,學生運用幾何畫板演示并驗證得到的方法。
    得到五邊形的內(nèi)角和之后,同學們又認真地討論起六邊形、十邊形的內(nèi)角和。類比四邊形、五邊形的討論方法最終得出,六邊形內(nèi)角和是720o,十邊形內(nèi)角和是1440o。
    (二)引申思考,培養(yǎng)創(chuàng)新。
    師:通過前面的討論,你能知道多邊形內(nèi)角和嗎?
    思考:(1)多邊形內(nèi)角和與三角形內(nèi)角和的關(guān)系?
    (3)從多邊形一個頂點引的對角線分三角形的個數(shù)與多邊形邊數(shù)的關(guān)系?
    學生結(jié)合思考題進行討論,并把討論后的結(jié)果進行交流。
    發(fā)現(xiàn)1:四邊形內(nèi)角和是2個180o的和,五邊形內(nèi)角和是3個180o的和,六邊形內(nèi)角和是4個180o的和,十邊形內(nèi)角和是8個180o的和。
    發(fā)現(xiàn)3:一個n邊形從一個頂點引出的對角線分三角形的個數(shù)與邊數(shù)n存在(n-2)的關(guān)系。
    (三)實際應(yīng)用,優(yōu)勢互補。
    (2)一個多邊形的內(nèi)角和是1440o,且每個內(nèi)角都相等,則每個內(nèi)角的度數(shù)是()。
    (四)概括存儲。
    學生自己歸納總結(jié):
    2、運用轉(zhuǎn)化思想解決數(shù)學問題。
    3、用數(shù)形結(jié)合的思想解決問題。
    (五)作業(yè):練習冊第93頁1、2、3。
    數(shù)學教案-多邊形的內(nèi)角和篇十三
    1、回憶所學的平面圖形的面積推導過程,弄清圖形面積之間的內(nèi)在聯(lián)系,鞏固學生對面積計算公式的理解和記憶。
    2、通過整理知識網(wǎng)絡(luò)圖進一步發(fā)展學生的空間觀念,提高學生分析和綜合概括的能力。
    3、讓學生通過靈活運用知識解決實際問題,提高不同層次學生解決實際問題的能力。
    4、體會數(shù)學與生活的聯(lián)系,培養(yǎng)學生學習數(shù)學的興趣,以及良好的學習習慣和學習態(tài)度。
    通過整理知識網(wǎng)絡(luò)圖進一步發(fā)展學生的空間觀念,提高學生分析和綜合概括的能力。
    通過靈活運用知識解決實際問題,提高不同層次學生解決實際問題的能力。
    根據(jù)本課的教學內(nèi)容,本課采用先整理后練習的復習模式。
    本課的指導思想是發(fā)揮學生的主題作用,引導學生自主學習,使不同學生在數(shù)學課上得到不同的發(fā)展?!墩n標》指出:動手實踐、自主探索與合作交流是學生學習數(shù)學的.重要方式;學生是數(shù)學學習的主人,教師是數(shù)學學習的組織者、引導者與合作者。本課在回憶整理應(yīng)用的教學環(huán)節(jié)中,通過教師引導和點撥,提高學生的歸納整理知識的能力,并充分調(diào)動了學生的學習積極性,從而提高了學生運用所學的知識解決問題的能力。
    (一)整理和復習。
    1、回憶。
    課的開始,我讓學生回憶學過的平面圖形的面積,想到哪個說哪個,給了學生選擇的余地,提高學生回答問題的興趣。然后讓學生回憶推動過程時,采取了先讓同桌交流的方法,這是因為我分析學生可能會想到不同圖形的面積推導公式,為了照顧不同層次的學生,讓學生能人人動口,提高學生的語言表達能力。
    2、整理。
    在整理的過程中,學生邊說,我一邊用課件演示,空間想象能力強的學生可以閉上眼睛在頭腦中演示這個過程,空間想象能力弱的學生,可以借助多媒體來回憶,以便幫助他們更好的理解記憶面積公式。
    (二)構(gòu)建知識網(wǎng)絡(luò)圖。
    構(gòu)建知識網(wǎng)絡(luò)圖是課前我比較擔心的,我不知道學生會把知識網(wǎng)絡(luò)圖構(gòu)建成什么樣子。雖然課上在我的引領(lǐng)下這樣比較好控制,但是為了照顧不同層次的學生,我把這項工作放在了課前,先讓學生在家里整理好,這要就避免了學生之間相互模仿,無法體現(xiàn)個性;再通過課上的回憶讓學生自己修改,使學生逐步學會整理歸納的方法;最后同學之間交流,完善知識網(wǎng)絡(luò)圖。在這個環(huán)節(jié),面對學生構(gòu)建的知識網(wǎng)絡(luò)圖,只要有道理我就會給予肯定,這樣才能使學生敢于發(fā)表自己的意見,體現(xiàn)個體差異,增強自信心。
    (三)解決問題。
    在解決問題的過程中,我用了羊村村長領(lǐng)著大家去羊村參觀這一情境,充分調(diào)動了不同層次學生的學習積極性。
    要想去羊村參觀就得闖關(guān)成功,這三關(guān)分別針對不同方面:第一關(guān)針對的是我們班的學困生,這些題讓他們回答,可以使他們獲得成功的體驗,幫助他們樹立自信心,提高學習數(shù)學的興趣;第二關(guān)考驗學生是否能靈活運用面積公式,針對的是中等學生;第三關(guān)是對學生在面積計算中經(jīng)常出現(xiàn)錯誤的地方進行針對性練習,面向全體學生,以提高做題正確率。
    闖關(guān)成功后,計算玻璃的面積,是解決實際生活中的問題,讓學生體會到數(shù)學與生活的聯(lián)系。這塊玻璃是一個組合圖形,既可以用分割法計算,又可以用添補法計算,學生自己動手分一分、畫一畫,用自己的方法計算,充分體現(xiàn)了學生的個體差異。為了幫助學生理解,我制作了課件進行演示,直觀形象,針對學困生降低了難度。
    (四)課堂作業(yè)。
    課堂作業(yè)的設(shè)計也充分考慮到了不同層次的學生,第1題和第題較為簡單,學優(yōu)生做完后,給出了一道思考題,這道題為學有余力的學生準備。
    (五)小結(jié)。
    今天我們復習了多邊形的面積,并利用圖形之間的內(nèi)在聯(lián)系制作了知識網(wǎng)絡(luò)圖,還運用所學幫助羊村解決了實際問題,在這里懶羊羊代表羊村謝謝大家,帶給大家一首好聽的歌,請大家伴隨著歌聲下課。
    數(shù)學教案-多邊形的內(nèi)角和篇十四
    4、培養(yǎng)學生合作、表達等能力情感。
    教學重點與難點:多邊形內(nèi)角和與外角和特點是重點。
    利用化歸思想歸納多邊形內(nèi)角和與外角和特點是難點。
    教學過程:
    一、創(chuàng)設(shè)情境。
    師出示一個三角形,問:這是什么圖形?它是怎樣定義的?
    生:三條線段首尾順次連接而成的圖形。
    師:以次類推,你能告訴我什么樣的圖形叫做四邊形?五邊形?……n邊形呢?
    這些圖形我們都叫做多邊形。
    師:屏幕上的這一類多邊形我們稱為凸多邊形,還有一類如:
    我們叫做凹多邊形,不在我們今天的研究范圍之內(nèi)。
    二、探究新知。
    1、?確立研究范圍。
    生1:它的角。
    師:那么今天我們不妨先來研究一下多邊形的角。(出示課題:多邊形的內(nèi)角和與外角和)。
    數(shù)學教案-多邊形的內(nèi)角和篇十五
    本節(jié)課是人民教育出版社義務(wù)教育課程標準實驗教科書(六三學制)七年級下冊第七章第三節(jié)多邊形內(nèi)角和。
    二、教學目標。
    2、數(shù)學思考:通過把多邊形轉(zhuǎn)化成三角形體會轉(zhuǎn)化思想在幾何中的運用,同時讓學生體會從特殊到一般的認識問題的方法。
    3、解決問題:通過探索多邊形內(nèi)角和公式,嘗試從不同角度尋求解決問題的方法并能有效地解決問題。
    4、情感態(tài)度目標:通過猜想、推理活動感受數(shù)學活動充滿著探索以及數(shù)學結(jié)論的確定性,提高學生學習熱情。
    三、教學重、難點。
    數(shù)學教案-多邊形的內(nèi)角和篇十六
    板書設(shè)計:
    第二節(jié)物體分類的教學。
    三、教學方法。
    (一)、教幼兒把相同名稱和物體放在一起。
    (二)、教幼兒按物體的外部特征分類。
    表格:教幼兒按物體的外部特征分類的教學要求(投影)。
    顏色。
    教具要求。
    教學要求。
    形狀。
    教具要求。
    教學要求。
    大小、長短、粗細、厚薄、寬窄。
    教具要求。
    教學要求。
    將本文的word文檔下載到電腦,方便收藏和打印。
    數(shù)學教案-多邊形的內(nèi)角和篇十七
    學生已經(jīng)學過三角形的內(nèi)角和定理的知識基礎(chǔ),并且具備一定的化歸思想,但是推理能力和表達能力還稍稍有點欠缺。針對這種情況,我會引導學生利用分類、數(shù)形結(jié)合的思想,加強對數(shù)學知識的應(yīng)用,發(fā)展學生合情合理的推理能力和語言表達能力。
    1.知識與技能:運用三角形內(nèi)角和定理來推證多邊形內(nèi)角和公式,掌握多邊形的內(nèi)角和的計算公式。
    2.過程與方法:經(jīng)理探究多邊形內(nèi)角和計算方法的過程,培養(yǎng)學生的合作交流的意識。
    3.情感態(tài)度與價值觀:感受數(shù)學化歸的思想和實際應(yīng)用的價值,同時培養(yǎng)學生善于發(fā)現(xiàn),積極探究,合作創(chuàng)新的學習態(tài)度。
    1、請看:我身后的建筑物是什么?——水立方。我看到水立方時發(fā)現(xiàn)它的膜結(jié)構(gòu)的結(jié)合處都是多邊形,你們想知道這些多邊形的內(nèi)角和嗎?(多媒體展示)。
    知道四邊形的內(nèi)角和為360°,現(xiàn)在你能利用三角形的內(nèi)角和定理證明嗎?自主學習教材第34頁“動腦筋”
    【教學說明】“解放學生的手,解放學生的大腦”,鼓勵學生積極參與合作交流,尋找多種圖形形式,深入全面轉(zhuǎn)化的本質(zhì)——將四邊形轉(zhuǎn)化為三角形問題來解決.
    預設(shè)回答:能,可以引對角線,將多邊形分成幾個三角形。
    讓學生合作交流討論,展示探究成果。教材第35頁“探究”
    n邊形有幾個內(nèi)角?是否可以“轉(zhuǎn)化”為多個三角形的角來求得呢?如何“轉(zhuǎn)化”?
    【教學說明】通過五邊形、六邊形、七邊形、八邊形等特殊多邊形內(nèi)角和的探索,讓學生從特殊到一般歸納總結(jié)出多邊形內(nèi)角和公式,體會數(shù)形間的聯(lián)系,感受從特殊到一般的數(shù)學推理過程和數(shù)學思考方法.
    例:教材第36頁例1。
    【教學說明】讓學生利用多邊形的內(nèi)角和公式求一個多邊形的內(nèi)角和或它的邊數(shù),加深知識的理解與運用.
    1、若從一個多邊形的一個頂點出發(fā),最多可以引10條對角線,則它是()。
    a.十三邊形b.十二邊形。
    c.十一邊形d.十邊形。
    2、十二邊形的內(nèi)角和為,已知一個多邊形的內(nèi)角和是1260°,則這個多邊形的邊數(shù)是。
    【教學說明】由學生自主完成,教師及時了解學生的學習效果,讓學生經(jīng)歷運用知識解決問題的過程.對需要幫助的學生及時點撥并加以強化.在完成上述題目后,讓學生完成練習冊中本課時的對應(yīng)訓練部分.
    1、這節(jié)課你有什么新的收獲?
    教材第36頁練習1、2題。
    邊數(shù)越多,內(nèi)角和就越大;
    每增加一條邊,內(nèi)角和就增加180度。
    數(shù)學教案-多邊形的內(nèi)角和篇十八
    (1)知識結(jié)構(gòu):
    (2)重點和難點分析:
    重點:四邊形的有關(guān)概念及內(nèi)角和定理.因為四邊形的有關(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識,對后繼知識的學習起著重要的作用。
    難點:四邊形的概念及四邊形不穩(wěn)定性的理解和應(yīng)用.在前面講解三角形的概念時,因為三角形的三個頂點確定一個平面,所以三個頂點總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個條件,這幾個字的意思學生不好理解,所以是難點。
    2.教法建議。
    (1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個課件,使學生認識到這些四邊形都是常見圖形,研究它們具有實際應(yīng)用意義,從而激發(fā)學生學習數(shù)學的興趣。
    (2)本節(jié)的教學,要以三角形為基礎(chǔ),可以仿照三角形,通過類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點、內(nèi)角、外角、內(nèi)角和、外角和、周長等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對比著指給學生看,讓學生明確這些概念。
    (3)因為在三角形中沒有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決.結(jié)合圖形,讓學生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學生加深對對角線的作用的認識。
    (4)本節(jié)用到的數(shù)學思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識時要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對這兩種數(shù)學思想方法進行總結(jié),使學生明白碰到復雜的、未知的問題要轉(zhuǎn)化為簡單的、已知的問題。
    教學目標?:
    2.通過引導學生觀察氣象站的實例,培養(yǎng)學生從具體事物中抽象出幾何圖形的能力;
    3.通過推導四邊形內(nèi)角和定理,對學生滲透化歸轉(zhuǎn)化的數(shù)學思想;
    4.講解四邊形的有關(guān)概念時,聯(lián)系三角形的有關(guān)概念向?qū)W生滲透類比思想.
    教學重點:
    教學難點?:
    教學過程?:
    (一)復習。
    在小學里,我們學過長方形、正方形、平行四邊形和梯形的有關(guān)知識.請同學們回憶一下這些圖形的概念.找學生說出四種幾何圖形的概念,教師作評價.
    (二)提出問題,引入新課。
    利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件.(先看畫面一)。
    問題:你能類比三角形的概念,說出四邊形的概念嗎?
    (三)理解概念。
    1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.
    在定義中要強調(diào)“在同一平面內(nèi)”這個條件,或為學生稍微說明一下.其次,要給學生講清楚“首尾”和“順次”的含義.
    2.類比三角形的邊、頂點、內(nèi)角、外角的概念,找學生答出四邊形的邊、頂點、內(nèi)角、外交的概念.
    3.四邊形的記法:對照圖形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點的順序書寫,可以按順時針或逆時針的順序.
    練習:課本124頁1、2題.
    4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學生會辨認一個四邊形是不是凸四邊形就可以了.
    注意:在研究四邊形時,常常通過作它的對角線,把關(guān)于四邊形的問題化成關(guān)于三角形的問題來解決.
    (五)應(yīng)用、反思。
    例1已知:如圖,直線,垂足為b,直線,垂足為c.
    求證:(1);(2)。
    (2)?。
    練習:
    1.課本124頁3題.
    小結(jié):
    能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法.
    作業(yè)?:課本130頁2、3、4題.
    數(shù)學教案-多邊形的內(nèi)角和篇十九
    其次注重讓學生在學習活動中領(lǐng)悟數(shù)學思想方法。數(shù)學的思想方法比有限的數(shù)學知識更為重要。學生在探索多邊形內(nèi)角和的過程中先把多邊形轉(zhuǎn)化成三角形.進而求出內(nèi)角和,這體現(xiàn)了由未知轉(zhuǎn)化為已知的思想。特別是在課堂教學中適時的利用問題加以引導,使學生領(lǐng)會數(shù)學思想方法,真正理解和掌握數(shù)學的知識、技能,增強空間觀念及數(shù)學思考能力培養(yǎng),并獲得數(shù)學活動經(jīng)驗。同時,恰當?shù)氖褂谜n件擴大了課堂容量,使課堂教學的深度和廣度都有所提高。同時也加大了練習量,有助于學生知識可鞏固和提高。
    整節(jié)課學生的情緒飽滿,思維活躍,在教師適當?shù)囊龑?,學生能夠合作交流和自主探究,成功的探索出了多邊形的.內(nèi)角和公式,較好的完成了本節(jié)課的教學目標。
    不足之處:
    1.本節(jié)課給學生提供的探究思考與交流的時間比較充足,但展示交流的機會不夠充分,并且個別學生沒有很好的融入課堂,游離于課本之外。
    2.本節(jié)課學生小組活動的準備、具體實施、歸納交流、評價等環(huán)節(jié)設(shè)計不夠完善。
    3、練習不夠多樣化。
    數(shù)學教案-多邊形的內(nèi)角和篇二十
    活動。
    目標。
    1、繼續(xù)學習對應(yīng)數(shù)量與數(shù)字1~10。
    2、能將點子和數(shù)字進行配對。
    活動。
    準備。
    活動過程。
    一、出示小動物圖片,引起幼兒興趣。
    師:今天老師請來了幾個小動物。(出示十張小動物的圖片,并在他們身上編號1~10),來打個招呼!
    師:我們一起來數(shù)一數(shù)有幾個小動物呢?(老師與幼兒一起數(shù))看看他們身上寫著什么?(認讀1~10)。
    二、游戲:小矮人找朋友。
    1、導語:小朋友你們喜歡小動物嗎?今天小動物要和點子娃娃做游戲,(出示點子娃娃),聽聽,小動物們要說話了(老師以小矮人的口吻說話):“小點子,你們真可愛,可是我們不知道哪個點子娃娃是我的好朋友?!毙∨笥盐覀儊韼蛶退麄兒脝??(幼兒回答)。小朋友們觀察一下小動物和點子娃娃它們之間有什么相同的地方?(幼兒自由回答)。好現(xiàn)在咱們就來幫助小動物找朋友。
    2、幼兒幫助動物人找朋友,找完后,找個別幼兒說一說自己的想法。
    師:數(shù)一數(shù)你找了幾對朋友。(幼兒回答)。
    師:說說為什么他們兩個是朋友?你是怎么知道的?(幼兒回答)。
    三、小結(jié):今天,幫助小動物找到了朋友,你們真能干,小矮人都非常感謝你們,并讓我代他們謝謝你們。
    四、作業(yè)。
    師:請小朋友打開書的第13頁,我們一起來數(shù)一數(shù)。(引導幼兒完成作業(yè))。