最新勾股定理教案第一課時(優(yōu)質(zhì)9篇)

字號:

    作為一名默默奉獻的教育工作者,通常需要用到教案來輔助教學,借助教案可以讓教學工作更科學化。那么問題來了,教案應該怎么寫?下面是小編為大家?guī)淼膬?yōu)秀教案范文,希望大家可以喜歡。
    勾股定理教案第一課時篇一
    1、知識與技能目標
    學會觀察圖形,勇于探索圖形間的關系,培養(yǎng)學生的空間觀念。
    2、過程與方法
    (1)經(jīng)歷一般規(guī)律的探索過程,發(fā)展學生的抽象思維能力。
    (2)在將實際問題抽象成幾何圖形過程中,提高分析問題、解決問題的能力及滲透數(shù)學建模的思想。
    3、情感態(tài)度與價值觀
    (1)通過有趣的問題提高學習數(shù)學的興趣。
    (2)在解決實際問題的過程中,體驗數(shù)學學習的實用性。
    教學重點:
    探索、發(fā)現(xiàn)事物中隱含的勾股定理及其逆及理,并用它們解決生活實際問題。
    教學難點:
    利用數(shù)學中的建模思想構造直角三角形,利用勾股定理及逆定理,解決實際問題。
    教學準備:
    多媒體
    教學過程:
    第一環(huán)節(jié):創(chuàng)設情境,引入新課(3分鐘,學生觀察、猜想)
    情景:
    第二環(huán)節(jié):合作探究(15分鐘,學生分組合作探究)
    學生分為4人活動小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內(nèi)討論每種方案的路線計算方法,通過具體計算,總結出最短路線。讓學生發(fā)現(xiàn):沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究兩點連線最短問題,引導學生體會利用數(shù)學解決實際問題的方法:建立數(shù)學模型,構圖,計算。
    第三環(huán)節(jié):做一做(7分鐘,學生合作探究)
    教材23頁
    李叔叔想要檢測雕塑底座正面的ad邊和bc邊是否分別垂直于底邊ab,但他隨身只帶了卷尺。
    (1)你能替他想辦法完成任務嗎?
    第四環(huán)節(jié):鞏固練習(10分鐘,學生獨立完成)
    2.如圖,臺階a處的螞蟻要爬到b處搬運食物,它怎么走最近?并求出最近距離。
    第五環(huán)節(jié)課堂小結(3分鐘,師生問答)
    內(nèi)容:如何利用勾股定理及逆定理解決最短路程問題?
    第六環(huán)節(jié):布置作業(yè)(2分鐘,學生分別記錄)
    作業(yè):1.課本習題1.5第1,2,3題.
    要求:a組(學優(yōu)生):1、2、3
    b組(中等生):1、2
    c組(后三分之一生):1
    勾股定理教案第一課時篇二
    1、通過拼圖,用面積的方法說明勾股定理的正確性.
    2、通過實例應用勾股定理,培養(yǎng)學生的知識應用技能.
    1.用面積的方法說明勾股定理的正確.
    2.勾股定理的應用.
    勾股定理的應用.
    一、學前準備:
    1、閱讀課本第46頁到第47頁,完成下列問題:
    2、剪四個完全相同的直角三角形,然后將它們拼成如圖所示的'圖形。大正方形的面積可以表示為_________________________,又可以表示為__________________________.對比兩種表示方法,看看能不能得到勾股定理的結論。用上面得到的完全相同的四個直角三角形,還可以拼成如下圖所示的圖形,與上面的方法類似,也能說明勾股定理是正確的方法(請逐一說明)
    二、合作探究:
    (一)自學、相信自己:
    (二)思索、交流:
    (三)應用、探究:
    (四)鞏固練習:
    1、如圖,64、400分別為所在正方形的面積,則圖中字
    母a所代表的正方形面積是_________。
    三.學習體會:
    本節(jié)課我們進一步認識了勾股定理,并用兩種方法證明了這個定理,在應用此定理解決問題時,應注意只有直角三角形的三邊才有這樣的關系,如果不是直角三角形應該構造直角三角形來解決。
    2②圖
    四.自我測試:
    五.自我提高:
    勾股定理教案第一課時篇三
    思路點撥:要求甲、乙兩人的距離,就要確定甲、乙兩人在平面的位置關系,由于甲往東、乙往北,所以甲所走的路線與乙所走的路線互相垂直,然后求出甲、乙走的路程,利用勾股定理,即可求出甲、乙兩人的距離.(13千米)
    勾股定理教案第一課時篇四
    勾股定理是平面幾何有關度量的最基本定理,它從邊的角度進一步刻畫了直角三角形的特點。學習勾股定理極其逆定理是進一步認識和理解直角三角形的需要,也是后續(xù)有關幾何度量運算和代數(shù)學習的必然基礎。《新版數(shù)學課程標準》對勾股定理教學內(nèi)容的要求是:
    1、在研究圖形性質(zhì)和運動等過程中,進一步發(fā)展空間觀念;
    2、在多種形式的數(shù)學活動中,發(fā)展合情推理能力;
    3、經(jīng)歷從不同角度分析問題和解決問題的方法的過程,體驗解決問題方法的多樣性;
    4、探索勾股定理及其逆定理,并能運用它們解決一些簡單的實際問題。
    本節(jié)課的教學目標是:
    1、能正確運用勾股定理及其逆定理解決簡單的實際問題。
    教學重點和難點:
    應用勾股定理及其逆定理解決實際問題是重點。
    把實際問題化歸成數(shù)學模型是難點。
    根據(jù)新課標提出的“要從學生已有的生活經(jīng)驗出發(fā),讓學生親身經(jīng)歷將實際問題抽象成數(shù)學模型并進行解釋和運用的同時,在思維能力情感態(tài)度和價值觀等方面得到進步和發(fā)展”的理念,我想盡量給學生創(chuàng)設豐富的實際問題情境 ,使教學活動充滿趣味性和吸引力,讓他們在自主探究,合作交流中分析問題,建立數(shù)學模型,利用勾股定理及其逆定理解決問題。在教學過程中,采用一題多變的形式拓寬學生視野,訓練學生思維的靈活性,滲透化歸的思想以及分類討論思想,方程思想等,使學生在獲得知識的同時提高能力。
    在教學設計中,盡量考慮到不同學習水平的學生,注意知識由易到難的層次性,在課堂上,要照顧到接受較慢的學生。使不同學生有不同的收獲和發(fā)展。
    本節(jié)課設計了七個環(huán) 《勾股定理的應用》教學設計節(jié)、第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):變式訓練;第四環(huán)節(jié):議一議;第五環(huán)節(jié):做一做;第六環(huán)節(jié):交流小結;第七環(huán)節(jié):布置作業(yè)。
    第一環(huán)節(jié):情境引入
    情景1:復習提 問:勾股定理的語言表述以及幾何語言表達?
    設計意圖:溫習舊知識,規(guī)范語言及數(shù)學表達,體現(xiàn)
    設計意圖:既靈活考察學生對勾股定理的理解,又增加了趣味性,還能考察學生三角形三邊關系。
    第二環(huán)節(jié):合作探究(圓柱體表面路程最短問題)
    情景3:課本引例(螞蟻怎樣走最近)
    第三環(huán)節(jié):變式訓練(由圓柱體表面路程最短問題逐步變?yōu)殚L方體表面的距離最短問題)
    設計意圖:將問題的條件稍做改變,讓學生嘗試獨立解決,拓展學生視野,又加深他們對知識的理解和鞏固。再將圓柱問題變?yōu)檎襟w長方體問題,學生有了之前的經(jīng)驗,自然而然的將立體轉化為平面,利用勾股定理解決,此處長方體問題中學生會有不同的做法,正好透分類討論思想。
    第四環(huán)節(jié):議一議
    內(nèi)容:李叔叔想要檢測雕塑底座正面的ad邊和bc邊是否分別垂直于底邊ab,但他隨身只帶了卷尺:
    (1)你能替他想辦法完成任務嗎?
    設計意圖:
    第五環(huán)節(jié):方程與勾股定理
    在我國古代數(shù)學著作《九章算術》中記載了一道有趣的問題,這個問題的意思是:有一個水池,水面是一個邊長為10尺的正方形,在水池的中央有一根新生的蘆葦,它高出水面1尺,如果把這根蘆葦垂直拉向岸邊,它的頂端恰好到達岸邊的水面,請問這個水池的深度和這根蘆葦?shù)拈L度各是多 少尺?《意圖:學生可以進一步了解勾股定理的悠久歷史和廣泛應用,了解我國古代人民的聰明才智;學會運用方程的思想借助勾股定理解決實際問題。
    第六環(huán)節(jié):交流小結內(nèi)容:師生相互交流總結:
    1、解決實際問題的方法是建立數(shù)學模型求解、
    2、在尋求最短路徑時,往往把空間問題平面化,利用勾股定理及其逆定理解決實際問題、
    3、在直角三角形中,已知一條邊和另外兩條邊的關系,借助方程可以求出另外兩條邊。
    第七環(huán)作業(yè)設計:
    第一道題難度較小,大部分學生可以獨立完成,第二道題有較大難度,可以交流討論完成。
    勾股定理教案第一課時篇五
    1.理解勾股定理的逆定理的證明方法和證明過程;
    2.掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個三角形是直角三角形;
    二數(shù)學思考
    1.通過勾股定理的逆定理的探索,經(jīng)歷知識的發(fā)生發(fā)展與形成的過程;
    2.通過三角形三邊的數(shù)量關系來判斷三角形的形狀,體驗數(shù)形結合法的應用.
    三解決問題
    通過勾股定理的逆定理的證明及其應用,體會數(shù)形結合法在問題解決中的作用,并能運用勾股定理的逆定理解決相關問題.
    四情感態(tài)度
    2.在探究勾股定理的逆定理的證明及應用的活動中,通過一系列富有探究性的問題,滲透與他人交流合作的意識和探究精神.
    勾股定理教案第一課時篇六
    勾股定理是揭示三角形三條邊數(shù)量關系的一條非常重要的性質(zhì),也是幾何中最重要的定理之一。它是解直角三角形的主要依據(jù)之一,同時在實際生活中具有廣泛的用途,“數(shù)學源于生活,又用于生活”正是這章書所體現(xiàn)的主要思想。教材在編寫時注意培養(yǎng)學生的動手操作能力和分析問題的能力,通過實際操作,使學生獲得較為直觀的印象;通過聯(lián)系比較、探索、歸納,幫助學生理解勾股定理,以利于進行正確的應用。
    本節(jié)教科書從畢達哥拉斯觀察地面發(fā)現(xiàn)勾股定理的傳說談起,讓學生通過觀察計算一些以直角三角形兩條直角邊為邊長的小正方形的面積與以斜邊為邊長的正方形的面積的關系,發(fā)現(xiàn)兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積,從而發(fā)現(xiàn)勾股定理,這時教科書以命題的形式呈現(xiàn)了勾股定理。關于勾股定理的證明方法有很多,教科書正文中介紹了我國古人趙爽的證法。之后,通過三個探究欄目,研究了勾股定理在解決實際問題和解決數(shù)學問題中的應用,使學生對勾股定理的作用有一定的認識。
    一、知識與技能
    1、探索直角三角形三邊關系,掌握勾股定理,發(fā)展幾何思維。
    2、應用勾股定理解決簡單的實際問題
    3學會簡單的合情推理與數(shù)學說理
    二、過程與方法
    引入兩段中西關于勾股定理的史料,激發(fā)同學們的興趣,引發(fā)同學們的思考。通過動手操作探索與發(fā)現(xiàn)直角三角形三邊關系,經(jīng)歷小組協(xié)作與討論,進一步發(fā)展合作交流能力和數(shù)學表達能力,并感受勾股定理的應用知識。
    三、情感與態(tài)度目標
    通過對勾股定理歷史的了解,感受數(shù)學文化,激發(fā)學習興趣;在探究活動中,學生親自動手對勾股定理進行探索與驗證,培養(yǎng)學生的合作交流意識和探索精神,以及自主學習的能力。
    四、重點與難點
    1、探索和證明勾股定理
    2、熟練運用勾股定理
    一、創(chuàng)設情景,揭示課題
    1、教師展示圖片并介紹第一情景
    以中國最早的一部數(shù)學著作——《周髀算經(jīng)》的開頭為引,介紹周公向商高請教數(shù)學知識時的對話,為勾股定理的出現(xiàn)埋下伏筆。
    周公問:“竊聞乎大夫善數(shù)也,請問古者包犧立周天歷度.夫天不可階而升,地不可得尺寸而度,請問數(shù)安從出?”商高答:“數(shù)之法出于圓方,圓出于方,方出于矩,矩出九九八十一,故折矩以為勾廣三,股修四,徑隅五。既方其外,半之一矩,環(huán)而共盤.得成三、四、五,兩矩共長二十有五,是謂積矩。故禹之所以治天下者,此數(shù)之所由生也?!?BR>    2、教師展示圖片并介紹第二情景
    畢達哥拉斯是古希臘著名的數(shù)學家。相傳在2500年以前,他在朋友家做客時,發(fā)現(xiàn)朋友家用地磚鋪成的地面反映了直角三角形的某種特性。
    二、師生協(xié)作,探究問題
    1、現(xiàn)在請你也動手數(shù)一下格子,你能有什么發(fā)現(xiàn)嗎?
    2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有這樣的特點呢?
    3、你能得到什么結論嗎?
    三、得出命題
    勾股定理:如果直角三角形的兩直角邊長分別為a、b,斜邊長為c,那么,即直角三角形兩直角邊的平方和等于斜邊的平方。解釋:由于我國古代把直角三角形中較短的直角邊稱為勾,較長的邊稱為股,斜邊稱為弦,所以,把它叫做勾股定理。
    四、勾股定理的證明
    第一種方法:邊長為 的正方形可以看作是由4個直角邊分別為 、,斜邊為 的直角三角形圍在外面形成的。因為邊長為 的正方形面積加上4個直角三角形的面積等于外圍正方形的面積,所以可以列出等式 ,化簡得 。
    第二種方法:邊長為 的正方形可以看作是由4個直角邊分別為 、,斜邊為 的
    角三角形拼接形成的(虛線表示),不過中間缺出一個邊長為 的正方形“小洞”。
    因為邊長為 的正方形面積等于4個直角三角形的面積加上正方形“小洞”的面積,所以可以列出等式 ,化簡得 。
    這種證明方法很簡明,很直觀,它表現(xiàn)了我國古代數(shù)學家趙爽高超的證題思想和對數(shù)學的鉆研精神,是我們中華民族的驕傲。
    五、應用舉例,拓展訓練,鞏固反饋。
    勾股定理的靈活運用勾股定理在實際的生產(chǎn)生活當中有著廣泛的應用。勾股定理的發(fā)現(xiàn)和使用解決了許多生活中的問題,今天我們就來運用勾股定理解決一些問題,你可以嗎?試一試。
    六、歸納總結
    2、方法歸納:數(shù)方格看圖找關系,利用面積不變的方法。用直角三角形三邊表示正方形的面積觀察歸納注意畫一個直角三角形表示正方形面積,再次驗證自己的發(fā)現(xiàn)。
    七、討論交流
    讓學生發(fā)表自己的意見,提出他們模糊不清的概念,給他們一個梳理知識的機會,通過提示性的引導,讓學生對勾股定理的概念豁然開朗,為后面勾股定理的應用打下基礎。
    我們班的同學很聰明。大家很快就通過數(shù)格子發(fā)現(xiàn)了勾股定理的規(guī)律。還有什么地方不懂的嗎?跟大家一起來交流一下。請同學們課后在反思天地中都發(fā)表一下自己的學習心得。
    勾股定理教案第一課時篇七
    從知識結構上看,勾股定理揭示了直角三角形三條邊之間的數(shù)量關系,為后續(xù)學習解直角三角形提供重要的理論依據(jù),在現(xiàn)實生活中有著廣泛的應用。
    從學生認知結構上看,它把形的特征轉化成數(shù)量關系,架起了幾何與代數(shù)之間的橋梁;
    勾股定理又是對學生進行愛國主義教育的良好素材,因此具有相當重要的地位和作用。
    根據(jù)數(shù)學新課程標準以及八年級學生的認知水平我確定如下學習目標:知識技能、數(shù)學思考、問題解決、情感態(tài)度。其中【情感態(tài)度】方面,以我國數(shù)學文化為主線,激發(fā)學生熱愛祖國悠久文化的情感。
    (二)重點與難點
    為變被動接受為主動探究,我確定本節(jié)課的重點為:勾股定理的探索過程。限于八年級學生的思維水平,我將面積法(拼圖法)發(fā)現(xiàn)勾股定理確定為本節(jié)課的難點,我將引導學生動手實驗突出重點,合作交流突破難點。
    勾股定理教案第一課時篇八
    【知識與技能】
    理解并掌握勾股定理的逆定理,會應用定理判定直角三角形;理解勾股定理與勾股定理逆定理的區(qū)別與聯(lián)系;理解原命題和逆命題的概念,知道二者的關系及二者真假性的關系。
    【過程與方法】
    經(jīng)歷得出猜想、推理證明的過程,提升自主探究、分析問題、解決問題的能力。
    【情感、態(tài)度與價值觀】
    體會事物之間的聯(lián)系,感受幾何的魅力。
    【重點】勾股定理的逆定理及其證明。
    【難點】勾股定理的逆定理的證明。
    (一)導入新課
    復習勾股定理,分清其題設和結論。
    提問學生畫直角三角形的方法(可用尺類工具),然后要求不能用繩子以外的工具。
    出示古埃及人利用等長的3、4、5個繩結間距畫直角三角形的方法,以其中蘊含何道理為切入點引出課題。
    (二)講解新知
    請學生思考3,4,5之間的關系,結合勾股定理的學習經(jīng)驗明確
    出示數(shù)據(jù)2.5cm,6cm,6.5cm,請學生計算驗證數(shù)據(jù)滿足上述平方和關系,并畫出相應邊長的三角形檢驗是否為直角三角形。
    學生活動:同桌兩人一組,將三邊換成其他滿足上述平方和關系的數(shù)據(jù),如4cm,7.5cm,8.5cm,畫出相應邊長的三角形檢驗是否為直角三角形。
    勾股定理教案第一課時篇九
    了解勾股定理的一些證明方法,會簡單應用勾股定理解決問題
    在充分觀察、歸納、猜想的基礎上,探究勾股定理,在探究的過程中,發(fā)展合情推理,體會數(shù)形結合、從特殊到一般等數(shù)學思想。
    通過對我國古代研究勾股定理的成就介紹,培養(yǎng)學生的民族自豪感。
    1、創(chuàng)設情境
    師生活動:教師引導學生尋找圖形中的直角三角形和正方形等,并引導學生發(fā)現(xiàn)直角三角形的全等關系,指出通過今天的學習,就能理解會徽圖案的含義。
    設計意圖:本節(jié)課是本章的起始課,重視引言教學,從國際數(shù)學家大會的會徽說起,設置懸念,引入課題。
    2、探究勾股定理
    觀看洋蔥數(shù)學中關于勾股定理引入的視頻,讓我們一起走進神奇的數(shù)學世界
    追問:由這三個正方形的邊長構成的等腰直角三角形三條邊長之間又有怎么樣的關系?
    師生活動:教師引導學生發(fā)現(xiàn)正方形的面積等于邊長的平方,歸納出:等腰直角三角形兩條直角邊的平方和等于斜邊的平方。
    設計意圖:從最特殊的等腰直角三角形入手,便于學生觀察得到結論
    問題3:數(shù)學研究遵循從特殊到一般的數(shù)學思想,既然我們得到了等腰直角三角形三邊的這種特殊的數(shù)量關系,那我們不妨大膽猜測在一般的直角三角形(在下圖的方格紙中,每個方格的面積是1)中,這種特殊的數(shù)量關系也同樣成立。
    師生活動:學生獨立思考后小組討論,難點是如何證明求以斜邊為邊長的正方形的面積,可由師生共同總結得出可以通過割、補兩種方法,求出其面積。