定理與證明教案(專業(yè)23篇)

字號:

    教案的編寫可以幫助教師合理安排教學(xué)時間,確保教學(xué)進度和質(zhì)量。教案的編寫中要注意引導(dǎo)學(xué)生自主學(xué)習,培養(yǎng)學(xué)生的學(xué)習興趣。隨后是教案范文,供大家學(xué)習和參考,希望對大家有所幫助。
    定理與證明教案篇一
    本節(jié)課為《動能和動能定理》的復(fù)習課,教學(xué)目標是掌握動能概念,理解動能定理,并能在實際問題中熟練應(yīng)用。
    本節(jié)課從教學(xué)設(shè)計上來說,提問問題設(shè)計語言不巧妙,意圖不明確,會使學(xué)生不知道如何回答。這與自己備課時沒有認真思考提問語言,想著直來直去的提問或者直接提問學(xué)生最明白,而實際上是恰恰相反,提問一個問題之前最好能做一個簡單的問題引入,或給學(xué)生以適當?shù)奶崾荆@樣應(yīng)該會好點。在概念的梳理上,應(yīng)做到更加簡練,節(jié)約時間,提高效率。在例題的選擇上,應(yīng)追求對例題講解透徹,從一個問題中可以引申多個問題,或者增加變式,引發(fā)學(xué)生全方位思考,從而理解透徹,而不是追求多而不精。一節(jié)課要想讓人留下深刻印象,需要有亮點,在復(fù)習課中對典型例題濃墨重彩,是讓課出彩的一種方法。比如最后的一個例題,是一個很好的動態(tài)生成資源,學(xué)生在解題過程中會出現(xiàn)各種各樣的問題,因此可在此題上多加設(shè)計。另外要注重學(xué)生思維力度,合力設(shè)置問題,為學(xué)生鋪設(shè)好臺階,加深學(xué)生理解。
    在教學(xué)模式上,復(fù)習課宜采用導(dǎo)練的方式。與學(xué)生點對點的互動起到的效果較差,一個學(xué)生回答時,其余學(xué)生會顯得無所事事。宜采用學(xué)生相互補充相互評價的方法,讓整個課堂有緊迫感。
    定理與證明教案篇二
    《余弦定理》選自人教a版高中數(shù)學(xué)必修五第一章第一節(jié)第一課時。本節(jié)課的主要教學(xué)內(nèi)容是余弦定理的內(nèi)容及證明,以及運用余弦定理解決“兩邊一夾角”“三邊”的解三角形問題。
    知識與技能:1、理解并掌握余弦定理和余弦定理的推論。
    2、掌握余弦定理的推導(dǎo)、證明過程。
    3、能運用余弦定理及其推論解決“兩邊一夾角”“三邊”問題。 過程與方法:1、通過從實際問題中抽象出數(shù)學(xué)問題,培養(yǎng)學(xué)生知識的遷移能力。
    2、通過直角三角形到一般三角形的過渡,培養(yǎng)學(xué)生歸納總結(jié)能力。3、通過余弦定理推導(dǎo)證明的過程,培養(yǎng)學(xué)生運用所學(xué)知識解決實際問題的能力。
    情感態(tài)度與價值觀:1、在交流合作的過程中增強合作探究、團結(jié)協(xié)作精神,體驗 解決問題的成功喜悅。
    2、感受數(shù)學(xué)一般規(guī)律的美感,培養(yǎng)數(shù)學(xué)學(xué)習的興趣。 三、教學(xué)重難點
    重點:余弦定理及其推論和余弦定理的運用。
    難點:余弦定理的發(fā)現(xiàn)和推導(dǎo)過程以及多解情況的判斷。
    四、教學(xué)用具
    普通教學(xué)工具、多媒體工具 (以上均為命題教學(xué)的準備)
    定理與證明教案篇三
    即直角三角形兩直角的平方和等于斜邊的平方.。
    因此,在運用勾股定理計算三角形的邊長時,要注意如下三點:
    (2)注意分清斜邊和直角邊,避免盲目代入公式致錯;
    如,利用四個如圖1所示的直角三角形三角形,拼出如圖2所示的三個圖形.。
    請讀者證明.。
    請同學(xué)們自己證明圖(2)、(3).。
    3.在數(shù)軸上表示無理數(shù)。
    二、典例精析。
    132-52=144,所以另一條直角邊的長為12.。
    所以這個直角三角形的面積是×12×5=30(cm2).。
    例2如圖3(1),一只螞蟻沿棱長為a的正方體表面從頂點a爬到。
    頂點b,則它走過的最短路程為。
    a.b.c.3ad.分析:本題顯然與例2屬同種類型,思路相同.但正方體的。
    各棱長相等,因此只有一種展開圖.。
    解:將正方體側(cè)面展開。
    定理與證明教案篇四
    知識與技能:
    1、了解勾股定理的文化背景,體驗勾股定理的探索過程,了解利用拼圖驗證勾股定理的方法。
    2、了解勾股定理的內(nèi)容。
    3、能利用已知兩邊求直角三角形另一邊的長。
    過程與方法:
    1、通過拼圖活動,體驗數(shù)學(xué)思維的嚴謹性,發(fā)展形象思維。
    2、在探索活動中,學(xué)會與人合作,并能與他人交流思維的過程和探索的結(jié)果。
    情感與態(tài)度:
    1、通過對勾股定理歷史的了解,對比介紹我國古代和西方數(shù)學(xué)家關(guān)于勾股定理的研究,激發(fā)學(xué)生熱愛祖國悠久文化的情感,激勵學(xué)生奮發(fā)學(xué)習。
    2、在探索勾股定理的過程中,體驗獲得結(jié)論的快樂,鍛煉克服困難的勇氣,培養(yǎng)合作意識和探索精神。
    二教學(xué)重、難點。
    重點:探索和證明勾股定理難點:用拼圖方法證明勾股定理。
    三、學(xué)情分析。
    學(xué)生對幾何圖形的觀察,幾何圖形的分析能力已初步形成。部分學(xué)生解題思維能力比較高,能夠正確歸納所學(xué)知識,通過學(xué)習小組討論交流,能夠形成解決問題的思路。
    四、教學(xué)策略。
    本節(jié)課采用探究發(fā)現(xiàn)式教學(xué),由淺入深,由特殊到一般地提出問題,鼓勵學(xué)生采用觀察分析、自主探索、合作交流的學(xué)習方法,讓學(xué)生經(jīng)歷數(shù)學(xué)知識的形成與應(yīng)用過程。
    五、教學(xué)過程。
    教學(xué)環(huán)節(jié)。
    教學(xué)內(nèi)容。
    活動和意圖。
    創(chuàng)設(shè)情境導(dǎo)入新課。
    以“航天員在太空中遇到外星人時,用什么語言進行溝通”導(dǎo)入新課,讓孩子們盡情發(fā)揮他們的想象.而華羅庚建議可以用勾股定理的圖形進行和外星人溝通,為什么呢?通過一段vcr說明原因。
    [設(shè)計意圖]激發(fā)學(xué)生對勾股定理的興趣,從而較自然的引入課題。
    新知探究。
    畢達哥拉斯是古希臘著名的數(shù)學(xué)家。相傳在2500年以前,他在朋友家做客時,發(fā)現(xiàn)朋友家用地磚鋪成的地面反映了直角三角形的三邊的某種數(shù)量關(guān)系。
    (1)同學(xué)們,請你也來觀察下圖中的地面,看看能發(fā)現(xiàn)些什么?
    (2)你能找出圖18.1-1中正方形1、2、3面積之間的關(guān)系嗎?
    通過講述故事來進一步激發(fā)學(xué)生學(xué)習興趣,使學(xué)生在不知不覺中進入學(xué)習的最佳狀態(tài)。
    如圖,每個小方格代表1個單位面積,我們分別以a,b,c三邊為邊長作正方形。
    回答以下內(nèi)容:
    (1)想一想,怎樣利用小方格計算正方形a、b、c面積?
    (2)怎樣求出正方形面積c?
    (3)觀察所得的各組數(shù)據(jù),你有什么發(fā)現(xiàn)?
    (4)將正方形a,b,c分別移開,你能發(fā)現(xiàn)直角三角形邊長a,b,c有何數(shù)量關(guān)系?
    引導(dǎo)學(xué)生將邊不在格線上的圖形轉(zhuǎn)化為邊在格線上的圖形,以便于計算圖形面積.
    問題是思維的起點”,通過層層設(shè)問,引導(dǎo)學(xué)生發(fā)現(xiàn)新知。
    探究交流歸納。
    拼圖驗證加深理解。
    如圖,每個小方格代表1個單位面積,我們分別以a,b,c三邊為邊長作正方形。
    回答以下內(nèi)容:
    (1)想一想,怎樣利用小方格計算正方形p、q、r的面積?
    (2)怎樣求出正方形面積r?
    (3)觀察所得的各組數(shù)據(jù),你有什么發(fā)現(xiàn)?
    (4)將正方形p,q,r分別移開,你能發(fā)現(xiàn)直角三角形邊長a,b,c有何數(shù)量關(guān)系?
    由以上兩問題可得猜想:
    直角三角形兩直角邊的平方和等于斜邊的平方。
    而猜想要通過證明才能成為定理。
    活動探究:
    (1)讓學(xué)生利用學(xué)具進行拼圖。
    (2)多媒體課件展示拼圖過程及證明過程理解數(shù)學(xué)的嚴密性。
    從特殊的等腰直角三角形過渡到一般的直角三角形。
    滲透從特殊到一般的數(shù)學(xué)思想.為學(xué)生提供參與數(shù)學(xué)活動的時間和空間,發(fā)揮學(xué)生的主體作用;培養(yǎng)學(xué)生的類比遷移能力及探索問題的能力,使學(xué)生在相互欣賞、爭辯、互助中得到提高。
    通過這些實際操作,學(xué)生進行一步加深對數(shù)形結(jié)合的理解,拼圖也會產(chǎn)生感性認識,也為論證勾股定理做好準備。
    利用分組討論,加強合作意識。
    1、經(jīng)歷所拼圖形與多媒體展示圖形的聯(lián)系與區(qū)別。
    2、加強數(shù)學(xué)嚴密教育,從而更好地理解代數(shù)與圖形相結(jié)合。
    應(yīng)用新知解決問題。
    在應(yīng)用新知這個環(huán)節(jié),我把以往的單純求解邊長之類的題目換成了幾個運用勾股定理來解決問題的古算題。
    把生活中的實物抽象成幾何圖形,讓學(xué)生了解豐富變幻的圖形世界,培養(yǎng)了學(xué)生抽象思維能力,特別注重培養(yǎng)學(xué)生認識事物,探索問題,解決實際的能力。
    回顧小結(jié)整體感知。
    在最后的小結(jié)中,不但對知識進行小結(jié)更對方法要進行小節(jié),還可向?qū)W生介紹了美麗的圖案畢達哥拉斯樹,讓學(xué)生切身感受到其實數(shù)學(xué)與生活是緊密聯(lián)系的,進一步發(fā)現(xiàn)數(shù)學(xué)的另一種美。
    學(xué)生通過對學(xué)習過程的小結(jié),領(lǐng)會其中的數(shù)學(xué)思想方法;通過梳理所學(xué)內(nèi)容,形成完整知識結(jié)構(gòu),培養(yǎng)歸納概括能力。。
    布置作業(yè)鞏固加深。
    必做題:
    1.完成課本習題1,2,3題。
    選做題:
    針對學(xué)生認知的差異設(shè)計了有層次的作業(yè)題,既使學(xué)生鞏固知識,形成技能,讓感興趣的學(xué)生課后探索,感受數(shù)學(xué)證明的靈活、優(yōu)美與精巧,感受勾股定理的豐富文化。
    定理與證明教案篇五
    教學(xué)目標:
    1、知識目標:
    (2)學(xué)會利用勾股定理進行計算、證明與作圖;
    (3)了解有關(guān)勾股定理的歷史。
    2、能力目標:
    (1)在定理的證明中培養(yǎng)學(xué)生的拼圖能力;
    (2)通過問題的解決,提高學(xué)生的運算能力。
    3、情感目標:
    (1)通過自主學(xué)習的發(fā)展體驗獲取數(shù)學(xué)知識的感受;
    (2)通過有關(guān)勾股定理的歷史講解,對學(xué)生進行德育教育。
    教學(xué)難點:通過有關(guān)勾股定理的歷史講解,對學(xué)生進行德育教育。
    教學(xué)用具:直尺,微機。
    教學(xué)方法:以學(xué)生為主體的討論探索法。
    教學(xué)過程:
    1、新課背景知識復(fù)習。
    (1)三角形的三邊關(guān)系。
    (2)問題:(投影顯示)。
    直角三角形的三邊關(guān)系,除了滿足一般關(guān)系外,還有另外的特殊關(guān)系嗎?
    2、定理的獲得。
    讓學(xué)生用文字語言將上述問題表述出來。
    勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。
    強調(diào)說明:
    (1)勾――最短的邊、股――較長的直角邊、弦――斜邊。
    (2)學(xué)生根據(jù)上述學(xué)習,提出自己的問題(待定)。
    3、定理的證明方法。
    方法一:將四個全等的直角三角形拼成如圖1所示的正方形。
    方法二:將四個全等的直角三角形拼成如圖2所示的正方形。
    方法三:“總統(tǒng)”法、如圖所示將兩個直角三角形拼成直角梯形。
    以上證明方法都由學(xué)生先分組討論獲得,教師只做指導(dǎo)、最后總結(jié)說明。
    4、定理與逆定理的應(yīng)用。
    5、課堂小結(jié):
    已知直角三角形的兩邊求第三邊。
    已知直角三角形的一邊,求另兩邊的關(guān)系。
    6、布置作業(yè):
    a、書面作業(yè)p130#1、2、3。
    b、上交作業(yè)p132#1、3。
    定理與證明教案篇六
    動能定理是一條適用范圍很廣的物理定理,但教材在推導(dǎo)這一定理時,由一個恒力做功使物體的動能變化,得出力在一個過程中所作的功等于物體在這個過程中動能的變化。然后逐步擴展到幾個力做功和變力做功以及曲線運動的情況。這個梯度很大,為了幫助學(xué)生真正理解動能定理,我設(shè)置了一些具體的問題,逐步深入地進行研究,讓學(xué)生尋找物體動能的變化與哪些力做功相對應(yīng),從而使學(xué)生能夠順利的準確的理解動能定理的含義。
    探究式教學(xué)是實現(xiàn)物理教學(xué)目標的重要方法之一,()同時也是培養(yǎng)學(xué)生創(chuàng)新能力、發(fā)展學(xué)生非智力因素的重要途徑。因此,本節(jié)課我在教學(xué)設(shè)計時從動能的概念入手就注重對學(xué)生的引導(dǎo),使學(xué)生在探究中提出問題、設(shè)計方案、解決問題。在操作上本節(jié)教學(xué)我注重為學(xué)生創(chuàng)設(shè)一個和諧自由的課堂氛圍,讓每一位同學(xué)都積極參與課堂教學(xué)。在動能公式及動能定理的推導(dǎo)過程中,有師生間的討論、分析,甚至是相互質(zhì)疑。本節(jié)課我運用實驗探究法,通過質(zhì)量相同的物體高度的不同和高度相同質(zhì)量不同的兩種情況,得出動能和質(zhì)量速度的關(guān)系。用演繹推理法由動能公式進一步推導(dǎo)得出動能定理。在探究過程中,重點引導(dǎo)學(xué)生從外力做功和物體的動能變化量兩個方面思考,選擇受力情況較為簡單,動能變化量比較容易得到的具體形式。在解題過程中,讓學(xué)生采用對比的方法,體會到了運用動能定理解決問題的優(yōu)點和方法、步驟。讓學(xué)生采用這種自主探究式的學(xué)習方法進行學(xué)習,能夠有效得提高學(xué)生的學(xué)習興趣,提高課堂教學(xué)的效率。
    定理與證明教案篇七
    1、通過拼圖,用面積的方法說明勾股定理的正確性.
    2、通過實例應(yīng)用勾股定理,培養(yǎng)學(xué)生的知識應(yīng)用技能.
    一、學(xué)前準備:
    1、閱讀課本第46頁到第47頁,完成下列問題:。
    2、剪四個完全相同的直角三角形,然后將它們拼成如圖所示的'圖形。大正方形的面積可以表示為_________________________,又可以表示為__________________________.對比兩種表示方法,看看能不能得到勾股定理的結(jié)論。用上面得到的完全相同的四個直角三角形,還可以拼成如下圖所示的圖形,與上面的方法類似,也能說明勾股定理是正確的方法(請逐一說明)。
    二、合作探究:
    (一)自學(xué)、相信自己:
    (二)思索、交流:
    (三)應(yīng)用、探究:
    (四)鞏固練習:
    1、如圖,64、400分別為所在正方形的面積,則圖中字。
    母a所代表的正方形面積是_________。
    三.學(xué)習體會:
    本節(jié)課我們進一步認識了勾股定理,并用兩種方法證明了這個定理,在應(yīng)用此定理解決問題時,應(yīng)注意只有直角三角形的三邊才有這樣的關(guān)系,如果不是直角三角形應(yīng)該構(gòu)造直角三角形來解決。
    2②圖。
    四.自我測試:
    五.自我提高:
    定理與證明教案篇八
    各位老師大家好!
    今天我說課的內(nèi)容是余弦定理,本節(jié)內(nèi)容共分3課時,今天我將就第1課時的余弦定理的證明與簡單應(yīng)用進行說課。下面我分別從教材分析。教學(xué)目標的確定。教學(xué)方法的選擇和教學(xué)過程的設(shè)計這四個方面來闡述我對這節(jié)課的教學(xué)設(shè)想。
    一、教材分析。
    本節(jié)內(nèi)容是江蘇教育出版社出版的普通高中課程標準實驗教科書《數(shù)學(xué)》必修五的第一章第2節(jié),在此之前學(xué)生已經(jīng)學(xué)習過了勾股定理。平面向量、正弦定理等相關(guān)知識,這為過渡到本節(jié)內(nèi)容的學(xué)習起著鋪墊作用。本節(jié)內(nèi)容實質(zhì)是學(xué)生已經(jīng)學(xué)習的勾股定理的延伸和推廣,它描述了三角形重要的邊角關(guān)系,將三角形的“邊”與“角”有機的聯(lián)系起來,實現(xiàn)邊角關(guān)系的互化,為解決斜三角形中的邊角求解問題提供了一個重要的工具,同時也為在日后學(xué)習中判斷三角形形狀,證明三角形有關(guān)的等式與不等式提供了重要的依據(jù)。
    在本節(jié)課中教學(xué)重點是余弦定理的內(nèi)容和公式的掌握,余弦定理在三角形邊角計算中的運用;教學(xué)難點是余弦定理的發(fā)現(xiàn)及證明;教學(xué)關(guān)鍵是余弦定理在三角形邊角計算中的運用。
    二、教學(xué)目標的確定。
    基于以上對教材的認識,根據(jù)數(shù)學(xué)課程標準的“學(xué)生是數(shù)學(xué)學(xué)習的主人,教師是數(shù)學(xué)學(xué)習的組織者。引導(dǎo)者與合作者”這一基本理念,考慮到學(xué)生已有的認知結(jié)構(gòu)和心理特征,我認為本節(jié)課的教學(xué)目標有:
    三、教學(xué)方法的選擇。
    基于本節(jié)課是屬于新授課中的數(shù)學(xué)命題教學(xué),根據(jù)《學(xué)記》中啟發(fā)誘導(dǎo)的思想和布魯納的發(fā)現(xiàn)學(xué)習理論,我將主要采用“啟發(fā)式教學(xué)”和“探究性教學(xué)”的教學(xué)方法即從一個實際問題出發(fā),發(fā)現(xiàn)無法使用剛學(xué)習的正弦定理解決,造成學(xué)生在認知上的沖突,產(chǎn)生疑惑,從而激發(fā)學(xué)生的探索新知的欲望,之后進一步啟發(fā)誘導(dǎo)學(xué)生分析,綜合,概括從而得出原理解決問題,最終形成概念,獲得方法,培養(yǎng)能力。
    在教學(xué)中利用計算機多媒體來輔助教學(xué),充分發(fā)揮其快捷、生動、形象的特點。
    四、教學(xué)過程的設(shè)計。
    為達到本節(jié)課的教學(xué)目標、突出重點、突破難點,在教材分析、確定教學(xué)目標和合理選擇教法與學(xué)法的基礎(chǔ)上,我把教學(xué)過程設(shè)計為以下四個階段:創(chuàng)設(shè)情境、引入課題;探索研究、構(gòu)建新知;例題講解、鞏固練習;課堂小結(jié),布置作業(yè)。具體過程如下:
    1、創(chuàng)設(shè)情境,引入課題。
    利用多媒體引出如下問題:
    a地和b地之間隔著一個水塘現(xiàn)選擇一地點c,可以測得的大小及,求a、b兩地之間的距離c。
    【設(shè)計意圖】由于學(xué)生剛學(xué)過正弦定理,一定會采用剛學(xué)的知識解題,但由于無法找到一組已知的邊及其所對角,從而產(chǎn)生疑惑,激發(fā)學(xué)生探索欲望。
    2、探索研究、構(gòu)建新知。
    (1)由于初中接觸的是解直角三角形的問題,所以我將先帶領(lǐng)學(xué)生從特殊情況為直角三角形()時考慮。此時使用勾股定理,得。
    (3)考慮到我們所作的圖為銳角三角形,討論上述結(jié)論能否推廣到在為鈍角三角形()中。
    通過解決問題可以得到在任意三角形中都有,之后讓同學(xué)們類比出……這樣我就完成了對余弦定理的引入,之后總結(jié)給出余弦定理的內(nèi)容及公式表示。
    在學(xué)生已學(xué)習了向量的基礎(chǔ)上,考慮到新課改中要求使用新工具、新方法,我會引導(dǎo)同學(xué)類比向量法證明正弦定理的過程嘗試使用向量的方法證明余弦定理、之后引導(dǎo)學(xué)生對余弦定理公式進行變形,用三邊值來表示角的余弦值,給出余弦定理的第二種表示形式,這樣就完成了新知的構(gòu)建。
    根據(jù)余弦定理的兩種形式,我們可以利用余弦定理解決以下兩類解斜三角形的問題:
    (1)已知三邊,求三個角;
    (2)已知三角形兩邊及其夾角,求第三邊和其他兩個角。
    3、例題講解、鞏固練習。
    本階段的教學(xué)主要是通過對例題和練習的思考交流、分析講解以及反思小結(jié),使學(xué)生初步掌握使用余弦定理解決問題的方法。其中例題先以學(xué)生自己思考解題為主,教師點評后再規(guī)范解題步驟及板書,課堂練習請同學(xué)們自主完成,并請同學(xué)上黑板板書,從而鞏固余弦定理的運用。
    例題講解:
    例1在中,
    (1)已知,求;
    (2)已知,求。
    【設(shè)計意圖】例題1分別是通過已知三角形兩邊及其夾角求第三邊,已知三角形三邊求其夾角,這樣余弦定理的兩個形式分別得到了運用,進而鞏固了學(xué)生對余弦定理的運用。
    例2對于例題1(2),求的大小。
    【設(shè)計意圖】已經(jīng)求出了的度數(shù),學(xué)生可能會有兩種解法:運用正弦定理或運用余弦定理,比較正弦定理和余弦定理,發(fā)現(xiàn)使用余弦定理求解角的問題可以避免解的取舍問題。
    例3使用余弦定理證明:在中,當為銳角時;當為鈍角時,
    【設(shè)計意圖】例3通過對和的比較,體現(xiàn)了“余弦定理是勾股定理的推廣”這一思想,進一步加深了對余弦定理的認識和理解。
    課堂練習:
    練習1在中,
    (1)已知,求;
    (2)已知,求。
    【設(shè)計意圖】檢驗學(xué)生是否掌握余弦定理的兩個形式,鞏固學(xué)生對余弦定理的運用。
    練習2若三條線段長分別為5,6,7,則用這三條線段()。
    a、能組成直角三角形。
    b、能組成銳角三角形。
    c、能組成鈍角三角形。
    d、不能組成三角形。
    【設(shè)計意圖】與例題3相呼應(yīng)。
    練習3在中,已知,試求的大小。
    【設(shè)計意圖】要求靈活使用公式,對公式進行變形。
    4、課堂小結(jié),布置作業(yè)。
    先請同學(xué)對本節(jié)課所學(xué)內(nèi)容進行小結(jié),教師再對以下三個方面進行總結(jié):
    (3)余弦定理的可以解決的兩類解斜三角形的問題。
    通過師生的共同小結(jié),發(fā)揮學(xué)生的主體作用,有利于學(xué)生鞏固所學(xué)知識,也能培養(yǎng)學(xué)生的歸納和概括能力。
    布置作業(yè)。
    必做題:習題1、2、1、2、3、5、6;
    選做題:習題1、2、12、13。
    【設(shè)計意圖】。
    作業(yè)分為必做題和選做題、針對學(xué)生素質(zhì)的差異進行分層訓(xùn)練,既使學(xué)生掌握基礎(chǔ)知識,又使學(xué)有余力的學(xué)生有所提高。
    各位老師,以上所說只是我預(yù)設(shè)的一種方案,但課堂是千變?nèi)f化的,會隨著學(xué)生和教師的臨時發(fā)揮而隨機生成。預(yù)設(shè)效果如何,最終還有待于課堂教學(xué)實踐的檢驗。
    本說課一定存在諸多不足,懇請老師提出寶貴意見,謝謝。
    定理與證明教案篇九
    《動能和動能定理》是高中物理必修2第五章《機械能及其守恒定律》第七節(jié)的內(nèi)容,我從:教材分析、目標分析、教法學(xué)法、教學(xué)過程、板書設(shè)計和教學(xué)反思六個緯度作如下匯報:
    一、教材分析。
    1.內(nèi)容分析。
    《動能和動能定理》主要學(xué)習一個物理概念:動能;一個物理規(guī)律:動能定理。從知識與技能上要掌握動能表達式及其相關(guān)決定因素,動能定理的物理意義和實際的應(yīng)用。
    通過例題2的探究,理解正負功的物理意義,初步從能量守恒與轉(zhuǎn)化的角度認識功。在態(tài)度情感與價值觀上,在嘗試解決程序性問題的過程中,體驗物理學(xué)科既是基于實驗探究的一門實驗性學(xué)科,同時也是嚴密數(shù)學(xué)語言邏輯的學(xué)科,只有兩種方法體系并重,才能有效地認識自然,揭示客觀世界存在的物理規(guī)律。
    2.內(nèi)容地位。
    通過初中的學(xué)習,對功和動能概念已經(jīng)有了相關(guān)的認識,通過第六節(jié)的實驗探究,認識到做功與物體速度變化的關(guān)系。將本節(jié)課設(shè)計成一堂理論探究課有著積極的意義。因為通過“動能定理”的學(xué)習,深入理解“功是能量轉(zhuǎn)化的量度”,并在解釋功能關(guān)系上有著深遠的意義。為此設(shè)計如下目標:
    二、目標分析。
    1、三維教學(xué)目標。
    (一)、知識與技能。
    1.理解動能的'概念,并能進行相關(guān)計算;
    (二)、過程與方法。
    1.掌握恒力作用下動能定理的推導(dǎo);
    2.體會變力作用下動能定理解決問題的優(yōu)越性;
    (三)、情感態(tài)度與價值觀。
    體會“狀態(tài)的變化量量度復(fù)雜過程量”這一物理思想;感受數(shù)學(xué)語言對物理過程描述的。
    簡潔美;
    2.教學(xué)重點、難點:
    重點:對動能公式和動能定理的理解與應(yīng)用。
    難點:通過對動能定理的理解,加深對功、能關(guān)系的認識。
    三、教法和學(xué)法。
    學(xué)生的學(xué)法采取:任務(wù)驅(qū)動和合作探究;
    選取多媒體展示、嘗試練習題和“任務(wù)驅(qū)動問題”本節(jié)課為一課時。
    四、教學(xué)過程。
    設(shè)計成6個教學(xué)環(huán)節(jié):提出問題,導(dǎo)入新課;任務(wù)驅(qū)動,感知教材;合作探究,分享交流;精講點撥,釋疑解惑;典例引領(lǐng),內(nèi)化反思;課堂總結(jié),布置作業(yè)。
    將本文的word文檔下載到電腦,方便收藏和打印。
    定理與證明教案篇十
    教學(xué)目標1.在探索平行四邊形的判別條件中,理解并掌握用邊、對角線來判定平行四邊形的方法.
    2.會綜合運用平行四邊形的判定方法和性質(zhì)來解決問題。
    教學(xué)重點:平行四邊形的判定方法及應(yīng)用。
    教學(xué)難點:平行四邊形的判定定理與性質(zhì)定理的靈活應(yīng)用。
    引
    二.探。
    閱讀教材p44至p45。
    利用手中的學(xué)具——硬紙板條,通過觀察、測量、猜想、驗證、探索構(gòu)成平行四邊形的條件,思考并探討:
    (1)你能適當選擇手中的硬紙板條搭建一個平行四邊形嗎?
    (2)你怎樣驗證你搭建的四邊形一定是平行四邊形?
    (3)你能說出你的做法及其道理嗎?
    (4)能否將你的探索結(jié)論作為平行四邊形的一種判別方法?你能用文字語言表述出來嗎?
    (5)你還能找出其他方法嗎?
    從探究中得到:
    平行四邊形判定方法1兩組對邊分別相等的四邊形是平行四邊形。
    平行四邊形判定方法2對角線互相平分的四邊形是平行四邊形。
    證一證。
    平行四邊形判定方法1兩組對邊分別相等的四邊形是平行四邊形。
    證明:(畫出圖形)。
    平行四邊形判定方法2一組對邊平行且相等的四邊形是平行四邊形。
    證明:(畫出圖形)。
    三.結(jié)。
    兩組對邊分別相等的四邊形是平行四邊形。
    對角線互相平分的四邊形是平行四邊形。
    四.用。
    定理與證明教案篇十一
    2、兩點之間線段最短。
    3、同角或等角的補角相等。
    4、同角或等角的余角相等。
    5、過一點有且只有一條直線和已知直線垂直。
    6、直線外一點與直線上各點連接的所有線段中,垂線段最短。
    7、平行公理經(jīng)過直線外一點,有且只有一條直線與這條直線平行。
    8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行。
    9、同位角相等,兩直線平行。
    10、內(nèi)錯角相等,兩直線平行。
    11、同旁內(nèi)角互補,兩直線平行。
    12、兩直線平行,同位角相等。
    13、兩直線平行,內(nèi)錯角相等。
    14、兩直線平行,同旁內(nèi)角互補。
    15、定理三角形兩邊的和大于第三邊。
    16、推論三角形兩邊的差小于第三邊。
    17、三角形內(nèi)角和定理三角形三個內(nèi)角的和等于180°。
    18、推論1直角三角形的兩個銳角互余。
    19、推論2三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和。
    20、推論3三角形的一個外角大于任何一個和它不相鄰的內(nèi)角。
    21、全等三角形的對應(yīng)邊、對應(yīng)角相等。
    22、邊角邊公理(sas)有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等。
    23、角邊角公理(asa)有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等。
    24、推論(aas)有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等。
    25、邊邊邊公理(sss)有三邊對應(yīng)相等的兩個三角形全等。
    26、斜邊、直角邊公理(hl)有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等。
    27、定理1在角的平分線上的點到這個角的兩邊的距離相等。
    28、定理2到一個角的兩邊的距離相同的點,在這個角的平分線上。
    29、角的平分線是到角的兩邊距離相等的所有點的集合。
    定理與證明教案篇十二
    學(xué)會觀察圖形,勇于探索圖形間的關(guān)系,培養(yǎng)學(xué)生的空間觀念。
    2、過程與方法。
    (1)經(jīng)歷一般規(guī)律的探索過程,發(fā)展學(xué)生的抽象思維能力。
    (2)在將實際問題抽象成幾何圖形過程中,提高分析問題、解決問題的能力及滲透數(shù)學(xué)建模的思想。
    3、情感態(tài)度與價值觀。
    (1)通過有趣的問題提高學(xué)習數(shù)學(xué)的興趣。
    (2)在解決實際問題的過程中,體驗數(shù)學(xué)學(xué)習的實用性。
    教學(xué)重點:
    探索、發(fā)現(xiàn)事物中隱含的勾股定理及其逆及理,并用它們解決生活實際問題。
    教學(xué)難點:
    利用數(shù)學(xué)中的建模思想構(gòu)造直角三角形,利用勾股定理及逆定理,解決實際問題。
    教學(xué)準備:
    多媒體。
    教學(xué)過程:
    第一環(huán)節(jié):創(chuàng)設(shè)情境,引入新課(3分鐘,學(xué)生觀察、猜想)。
    情景:
    第二環(huán)節(jié):合作探究(15分鐘,學(xué)生分組合作探究)。
    學(xué)生分為4人活動小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內(nèi)討論每種方案的路線計算方法,通過具體計算,總結(jié)出最短路線。讓學(xué)生發(fā)現(xiàn):沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究兩點連線最短問題,引導(dǎo)學(xué)生體會利用數(shù)學(xué)解決實際問題的方法:建立數(shù)學(xué)模型,構(gòu)圖,計算。
    第三環(huán)節(jié):做一做(7分鐘,學(xué)生合作探究)。
    教材23頁。
    李叔叔想要檢測雕塑底座正面的ad邊和bc邊是否分別垂直于底邊ab,但他隨身只帶了卷尺。
    (1)你能替他想辦法完成任務(wù)嗎?
    第四環(huán)節(jié):鞏固練習(10分鐘,學(xué)生獨立完成)。
    2.如圖,臺階a處的螞蟻要爬到b處搬運食物,它怎么走最近?并求出最近距離。
    第五環(huán)節(jié)課堂小結(jié)(3分鐘,師生問答)。
    內(nèi)容:如何利用勾股定理及逆定理解決最短路程問題?
    第六環(huán)節(jié):布置作業(yè)(2分鐘,學(xué)生分別記錄)。
    作業(yè):1.課本習題1.5第1,2,3題.。
    要求:a組(學(xué)優(yōu)生):1、2、3。
    b組(中等生):1、2。
    c組(后三分之一生):1。
    定理與證明教案篇十三
    最早對勾股定理進行證明的,是三國時期吳國的數(shù)學(xué)家趙爽。趙爽創(chuàng)制了一幅“勾股圓方圖”,用形數(shù)結(jié)合得到方法,給出了勾股定理的詳細證明。在這幅“勾股圓方圖”中,以弦為邊長玫秸?叫蜛bde是由4個相等的直角三角形再加上中間的那個小正方形組成的。每個直角三角形的面積為ab/2;中間懂得小正方形邊長為b-a,則面積為(b-a)2。于是便可得如下的式子:
    4×(ab/2)+(b-a)2=c2。
    化簡后便可得:
    a2+b2=c2。
    亦即:
    c=(a2+b2)(1/2)。
    稍后一點的劉徽在證明勾股定理時也是用以形證數(shù)的方法,劉徽用了“出入相補法”即剪貼證明法,他把勾股為邊的正方形上的某些區(qū)域剪下來(出),移到以弦為邊的正方形的空白區(qū)域內(nèi)(入),結(jié)果剛好填滿,完全用圖解法就解決了問題。
    再給出兩種。
    1。做直角三角形的高,然后用相似三角形比例做出。
    2。把直角三角形內(nèi)接于圓。然后擴張做出一矩形。最后用一下托勒密定。
    定理與證明教案篇十四
    中國最早的一部數(shù)學(xué)著作——《周髀算經(jīng)》的開頭,記載著一段周公向商高請教數(shù)學(xué)知識的對話:
    周公問:“我聽說您對數(shù)學(xué)非常精通,我想請教一下:天沒有梯子可以上去,地也沒法用尺子去一段一段丈量,那么
    怎樣
    才能得到
    關(guān)于
    天地得到數(shù)據(jù)呢?”
    商高回答說:“數(shù)的產(chǎn)生來源于對方和圓這些形體餓認識。其中有一條原理:當直角三角形‘矩’得到的一條直角邊‘勾’等于3,另一條直角邊‘股’等于4的時候,那么它的斜邊‘弦’就必定是5。這個原理是大禹在治水的時候就總結(jié)出來的呵。”
    從上面所引的這段對話中,我們可以清楚地看到,我國古代的人民早在幾千年以前就已經(jīng)發(fā)現(xiàn)并應(yīng)用勾股定理這一重要懂得數(shù)學(xué)原理了。稍懂平面幾何餓讀者都知道,所謂勾股定理,就是指在直角三角形中,兩條直角邊的平方和等于斜邊的平方。
    用勾(a)和股(b)分別表示直角三角形得到兩條直角邊,用弦(c)來表示斜邊,則可得:
    勾2+股2=弦2
    亦即:
    a2+b2=c2
    勾股定理在西方被稱為畢達哥拉斯定理,相傳是古希臘數(shù)學(xué)家兼哲學(xué)家畢達哥拉斯于公元前550年首先發(fā)現(xiàn)的。其實,我國古代得到人民對這一數(shù)學(xué)定理的發(fā)現(xiàn)和應(yīng)用,遠比畢達哥拉斯早得多。如果說大禹治水因年代久遠而無法確切考證的話,那么周公與商高的.對話則可以確定在公元前1100年左右的西周時期,比畢達哥拉斯要早了
    五百
    多年。其中所說的勾3股4弦5,正是勾股定理的一個應(yīng)用特例(32+42=52)。所以現(xiàn)在數(shù)學(xué)界把它稱為勾股定理,應(yīng)該是非常恰當?shù)摹?BR>    在稍后一點的《九章算術(shù)一書》中,勾股定理得到了更加規(guī)范的一般性表達。書中的《勾股章》說;“把勾和股分別自乘,然后把它們的積加起來,再進行開方,便可以得到弦?!卑堰@段話列成算式,即為:
    弦=(勾2+股2)(1/2)
    亦即:
    c=(a2+b2)(1/2)
    中國古代的數(shù)學(xué)家們不僅很早就發(fā)現(xiàn)并應(yīng)用勾股定理,而且很早就嘗試對勾股定理作理論的證明。最早對勾股定理進行證明的,是三國時期吳國的數(shù)學(xué)家趙爽。趙爽創(chuàng)制了一幅“勾股圓方圖”,用形數(shù)結(jié)合得到方法,給出了勾股定理的詳細證明。在這幅“勾股圓方圖”中,以弦為邊長得到正方形abde是由4個相等的直角三角形再加上中間的那個小正方形組成的。每個直角三角形的面積為ab/2;中間懂得小正方形邊長為b-a,則面積為(b-a)2。于是便可得如下的式子:
    4×(ab/2)+(b-a)2=c2
    化簡后便可得:
    a2+b2=c2
    亦即:
    c=(a2+b2)(1/2)
    趙爽的這個證明可謂別具匠心,極富創(chuàng)新意識。他用幾何圖形的截、割、拼、補來證明代數(shù)式之間的恒等關(guān)系,既具嚴密性,又具直觀性,為中國古代以形證數(shù)、形數(shù)統(tǒng)一、代數(shù)和幾何緊密結(jié)合、互不可分的獨特風格樹立了一個典范。以后的數(shù)學(xué)家大多繼承了這一風格并且代有發(fā)展。例如稍后一點的劉徽在證明勾股定理時也是用的以形證數(shù)的方法,只是具體圖形的分合移補略有不同而已。
    中國古代數(shù)學(xué)家們對于勾股定理的發(fā)現(xiàn)和證明,在世界數(shù)學(xué)史上具有獨特的貢獻和地位。尤其是其中體現(xiàn)出來的“形數(shù)統(tǒng)一”的思想方法,更具有科學(xué)創(chuàng)新的重大意義。事實上,“形數(shù)統(tǒng)一”的思想方法正是數(shù)學(xué)發(fā)展的一個極其重要的條件。正如當代中國數(shù)學(xué)家吳文俊所說:“在中國的傳統(tǒng)數(shù)學(xué)中,數(shù)量關(guān)系與空間形式往往是形影不離地并肩發(fā)展著的......十七世紀笛卡兒解析幾何的發(fā)明,正是中國這種傳統(tǒng)思想與方法在幾百年停頓后的重現(xiàn)與繼續(xù)?!?。
    定理與證明教案篇十五
    1,根據(jù)定義:三角形兩邊中點之間的'線段為三角形的中位線。
    2.經(jīng)過三角形一邊中點與另一邊平行的直線與第三邊相交,交點與中點之間的線段為三角形的中位線。
    3.端點在三角形的兩邊上與第三邊平行且等于第三邊的一半的線段為三角形的中位線。
    定理與證明教案篇十六
    今天我說課的內(nèi)容是余弦定理,本節(jié)內(nèi)容共分3課時,今天我將就第1課時的余弦定理的證明與簡單應(yīng)用進行說課。下面我分別從教材分析。教學(xué)目標的確定。教學(xué)方法的選擇和教學(xué)過程的設(shè)計這四個方面來闡述我對這節(jié)課的教學(xué)設(shè)想。
    本節(jié)內(nèi)容是江蘇教育出版社出版的普通高中課程標準實驗教科書《數(shù)學(xué)》必修五的第一章第2節(jié),在此之前學(xué)生已經(jīng)學(xué)習過了勾股定理。平面向量、正弦定理等相關(guān)知識,這為過渡到本節(jié)內(nèi)容的學(xué)習起著鋪墊作用。本節(jié)內(nèi)容實質(zhì)是學(xué)生已經(jīng)學(xué)習的勾股定理的延伸和推廣,它描述了三角形重要的邊角關(guān)系,將三角形的“邊”與“角”有機的聯(lián)系起來,實現(xiàn)邊角關(guān)系的互化,為解決斜三角形中的邊角求解問題提供了一個重要的工具,同時也為在日后學(xué)習中判斷三角形形狀,證明三角形有關(guān)的等式與不等式提供了重要的依據(jù)。
    在本節(jié)課中教學(xué)重點是余弦定理的內(nèi)容和公式的掌握,余弦定理在三角形邊角計算中的運用;教學(xué)難點是余弦定理的發(fā)現(xiàn)及證明;教學(xué)關(guān)鍵是余弦定理在三角形邊角計算中的運用。
    基于以上對教材的認識,根據(jù)數(shù)學(xué)課程標準的“學(xué)生是數(shù)學(xué)學(xué)習的主人,教師是數(shù)學(xué)學(xué)習的組織者。引導(dǎo)者與合作者”這一基本理念,考慮到學(xué)生已有的認知結(jié)構(gòu)和心理特征,我認為本節(jié)課的教學(xué)目標有:
    基于本節(jié)課是屬于新授課中的數(shù)學(xué)命題教學(xué),根據(jù)《學(xué)記》中啟發(fā)誘導(dǎo)的思想和布魯納的發(fā)現(xiàn)學(xué)習理論,我將主要采用“啟發(fā)式教學(xué)”和“探究性教學(xué)”的教學(xué)方法即從一個實際問題出發(fā),發(fā)現(xiàn)無法使用剛學(xué)習的正弦定理解決,造成學(xué)生在認知上的沖突,產(chǎn)生疑惑,從而激發(fā)學(xué)生的探索新知的欲望,之后進一步啟發(fā)誘導(dǎo)學(xué)生分析,綜合,概括從而得出原理解決問題,最終形成概念,獲得方法,培養(yǎng)能力。
    在教學(xué)中利用計算機多媒體來輔助教學(xué),充分發(fā)揮其快捷、生動、形象的特點。
    為達到本節(jié)課的教學(xué)目標、突出重點、突破難點,在教材分析、確定教學(xué)目標和合理選擇教法與學(xué)法的基礎(chǔ)上,我把教學(xué)過程設(shè)計為以下四個階段:創(chuàng)設(shè)情境、引入課題;探索研究、構(gòu)建新知;例題講解、鞏固練習;課堂小結(jié),布置作業(yè)。具體過程如下:
    1、創(chuàng)設(shè)情境,引入課題
    利用多媒體引出如下問題:
    a地和b地之間隔著一個水塘現(xiàn)選擇一地點c,可以測得的大小及,求a、b兩地之間的距離c。
    【設(shè)計意圖】由于學(xué)生剛學(xué)過正弦定理,一定會采用剛學(xué)的知識解題,但由于無法找到一組已知的邊及其所對角,從而產(chǎn)生疑惑,激發(fā)學(xué)生探索欲望。
    2、探索研究、構(gòu)建新知
    (1)由于初中接觸的是解直角三角形的問題,所以我將先帶領(lǐng)學(xué)生從特殊情況為直角三角形()時考慮。此時使用勾股定理,得。
    (3)考慮到我們所作的圖為銳角三角形,討論上述結(jié)論能否推廣到在為鈍角三角形()中。
    通過解決問題可以得到在任意三角形中都有,之后讓同學(xué)們類比出……這樣我就完成了對余弦定理的引入,之后總結(jié)給出余弦定理的內(nèi)容及公式表示。
    在學(xué)生已學(xué)習了向量的基礎(chǔ)上,考慮到新課改中要求使用新工具、新方法,我會引導(dǎo)同學(xué)類比向量法證明正弦定理的過程嘗試使用向量的方法證明余弦定理、之后引導(dǎo)學(xué)生對余弦定理公式進行變形,用三邊值來表示角的余弦值,給出余弦定理的第二種表示形式,這樣就完成了新知的構(gòu)建。
    根據(jù)余弦定理的兩種形式,我們可以利用余弦定理解決以下兩類解斜三角形的問題:
    (1)已知三邊,求三個角;
    (2)已知三角形兩邊及其夾角,求第三邊和其他兩個角。
    3、例題講解、鞏固練習
    本階段的教學(xué)主要是通過對例題和練習的思考交流、分析講解以及反思小結(jié),使學(xué)生初步掌握使用余弦定理解決問題的方法。其中例題先以學(xué)生自己思考解題為主,教師點評后再規(guī)范解題步驟及板書,課堂練習請同學(xué)們自主完成,并請同學(xué)上黑板板書,從而鞏固余弦定理的運用。
    例題講解:
    例1在中,
    (1)已知,求;
    (2)已知,求。
    【設(shè)計意圖】例題1分別是通過已知三角形兩邊及其夾角求第三邊,已知三角形三邊求其夾角,這樣余弦定理的兩個形式分別得到了運用,進而鞏固了學(xué)生對余弦定理的運用。
    例2對于例題1(2),求的大小。
    【設(shè)計意圖】已經(jīng)求出了的度數(shù),學(xué)生可能會有兩種解法:運用正弦定理或運用余弦定理,比較正弦定理和余弦定理,發(fā)現(xiàn)使用余弦定理求解角的問題可以避免解的取舍問題。
    例3使用余弦定理證明:在中,當為銳角時;當為鈍角時,
    【設(shè)計意圖】例3通過對和的比較,體現(xiàn)了“余弦定理是勾股定理的推廣”這一思想,進一步加深了對余弦定理的認識和理解。
    課堂練習:
    練習1在中,
    (1)已知,求;
    (2)已知,求。
    【設(shè)計意圖】檢驗學(xué)生是否掌握余弦定理的兩個形式,鞏固學(xué)生對余弦定理的運用。
    練習2若三條線段長分別為5,6,7,則用這三條線段()。
    a、能組成直角三角形
    b、能組成銳角三角形
    c、能組成鈍角三角形
    d、不能組成三角形
    【設(shè)計意圖】與例題3相呼應(yīng)。
    練習3在中,已知,試求的大小。
    【設(shè)計意圖】要求靈活使用公式,對公式進行變形。
    4、課堂小結(jié),布置作業(yè)
    先請同學(xué)對本節(jié)課所學(xué)內(nèi)容進行小結(jié),教師再對以下三個方面進行總結(jié):
    (1)余弦定理的內(nèi)容和公式;
    (2)余弦定理實質(zhì)上是勾股定理的推廣;
    (3)余弦定理的可以解決的兩類解斜三角形的問題。
    通過師生的共同小結(jié),發(fā)揮學(xué)生的主體作用,有利于學(xué)生鞏固所學(xué)知識,也能培養(yǎng)學(xué)生的歸納和概括能力。
    布置作業(yè)
    必做題:習題1、2、1、2、3、5、6;
    選做題:習題1、2、12、13。
    【設(shè)計意圖】
    作業(yè)分為必做題和選做題、針對學(xué)生素質(zhì)的差異進行分層訓(xùn)練,既使學(xué)生掌握基礎(chǔ)知識,又使學(xué)有余力的學(xué)生有所提高。
    各位老師,以上所說只是我預(yù)設(shè)的一種方案,但課堂是千變?nèi)f化的,會隨著學(xué)生和教師的臨時發(fā)揮而隨機生成。預(yù)設(shè)效果如何,最終還有待于課堂教學(xué)實踐的檢驗。
    本說課一定存在諸多不足,懇請老師提出寶貴意見,謝謝。
    定理與證明教案篇十七
    左邊的正方形是由1個邊長為的正方形和1個邊長為的正方形以及4個直角邊分別為、,斜邊為的直角三角形拼成的。右邊的正方形是由1個邊長為的正方形和4個直角邊分別為、,斜邊為的直角三角形拼成的。因為這兩個正方形的面積相等(邊長都是),所以可以列出等式,化簡得。
    在西方,人們認為是畢達哥拉斯最早發(fā)現(xiàn)并證明這一定理的,但遺憾的是,他的證明方法已經(jīng)失傳,這是傳說中的'證明方法,這種證明方法簡單、直觀、易懂。
    第一種方法:邊長為的正方形可以看作是由4個直角邊分別為、,斜邊為的直
    角三角形圍在外面形成的。因為邊長為的正方形面積加上4個直角三角形的面積等于外圍正方形的面積,所以可以列出等式,化簡得。
    第二種方法:邊長為的正方形可以看作是由4個直角邊分別為、,斜邊為的
    角三角形拼接形成的(虛線表示),不過中間缺出一個邊長為的正方形“小洞”。
    因為邊長為的正方形面積等于4個直角三角形的面積加上正方形“小洞”的面積,所以可以列出等式,化簡得。
    這種證明方法很簡明,很直觀,它表現(xiàn)了我國古代數(shù)學(xué)家趙爽高超的證題思想和對數(shù)學(xué)的鉆研精神,是我們中華民族的驕傲。
    這個直角梯形是由2個直角邊分別為、,斜邊為的直角三角形和1個直角邊為
    的等腰直角三角形拼成的。因為3個直角三角形的面積之和等于梯形的面積,所以可以列出等式,化簡得。
    這種證明方法由于用了梯形面積公式和三角形面積公式,從而使證明更加簡潔,它在數(shù)學(xué)史上被傳為佳話。
    定理與證明教案篇十八
    茲有________學(xué)校__________學(xué)院______專業(yè)_________同學(xué)于_________年___月____日至_____年______月日在實習。
    該同學(xué)的實習職位是_____________。
    該學(xué)生在實習期間工作認真,腳踏實地,虛心請教并且努力掌握工作技能,善于思考,能夠舉一反三。善解人意,積極配合領(lǐng)導(dǎo)及同事的工作,虛心聽取他人意見。在時間緊迫的情況下,能夠加時加班完成任務(wù)。能夠?qū)⒃趯W(xué)校所學(xué)的知識靈活應(yīng)用到具體的工作中去,保質(zhì)保量完成工作任務(wù)。同時,本公司將要求該學(xué)生嚴格遵守我公司的各項規(guī)章制度,實習時間,服從實習安排,完成實習任務(wù),尊敬實習單位人員,并能與公司同事和睦相處。與其一同合作的員工都對該學(xué)生的表現(xiàn)予以肯定。
    特此證明。
    證明人:_________(實習單位蓋章)。
    _________年____月____日。
    定理與證明教案篇十九
    中國最早的一部數(shù)學(xué)著作――《周髀算經(jīng)》的開頭,記載著一段周公向商高請教數(shù)學(xué)知識的對話:
    周公問:“我聽說您對數(shù)學(xué)非常精通,我想請教一下:天沒有梯子可以上去,地也沒法用尺子去一段一段丈量,那么怎樣才能得到關(guān)于天地得到數(shù)據(jù)呢?”
    商高回答說:“數(shù)的產(chǎn)生來源于對方和圓這些形體餓認識。其中有一條原理:當直角三角形‘矩’得到的一條直角邊‘勾’等于3,另一條直角邊‘股’等于4的時候,那么它的斜邊‘弦’就必定是5。這個原理是大禹在治水的時候就總結(jié)出來的呵?!?BR>    從上面所引的這段對話中,我們可以清楚地看到,我國古代的人民早在幾千年以前就已經(jīng)發(fā)現(xiàn)并應(yīng)用勾股定理這一重要懂得數(shù)學(xué)原理了。稍懂平面幾何餓讀者都知道,所謂勾股定理,就是指在直角三角形中,兩條直角邊的平方和等于斜邊的平方。
    用勾(a)和股(b)分別表示直角三角形得到兩條直角邊,用弦(c)來表示斜邊,則可得:
    勾2+股2=弦2。
    亦即:
    a2+b2=c2。
    勾股定理在西方被稱為畢達哥拉斯定理,相傳是古希臘數(shù)學(xué)家兼哲學(xué)家畢達哥拉斯于公元前550年首先發(fā)現(xiàn)的。其實,我國古代得到人民對這一數(shù)學(xué)定理的發(fā)現(xiàn)和應(yīng)用,遠比畢達哥拉斯早得多。如果說大禹治水因年代久遠而無法確切考證的話,那么周公與商高的對話則可以確定在公元前1100年左右的西周時期,比畢達哥拉斯要早了五百多年。其中所說的勾3股4弦5,正是勾股定理的一個應(yīng)用特例(32+42=52)。所以現(xiàn)在數(shù)學(xué)界把它稱為勾股定理,應(yīng)該是非常恰當?shù)摹?BR>    在稍后一點的《九章算術(shù)一書》中,勾股定理得到了更加規(guī)范的一般性表達。書中的《勾股章》說;“把勾和股分別自乘,然后把它們的'積加起來,再進行開方,便可以得到弦?!卑堰@段話列成算式,即為:
    弦=(勾2+股2)(1/2)。
    亦即:
    c=(a2+b2)(1/2)。
    中國古代的數(shù)學(xué)家們不僅很早就發(fā)現(xiàn)并應(yīng)用勾股定理,而且很早就嘗試對勾股定理作理論的證明。最早對勾股定理進行證明的,是三國時期吳國的數(shù)學(xué)家趙爽。趙爽創(chuàng)制了一幅“勾股圓方圖”,用形數(shù)結(jié)合得到方法,給出了勾股定理的詳細證明。在這幅“勾股圓方圖”中,以弦為邊長得到正方形abde是由4個相等的直角三角形再加上中間的那個小正方形組成的。每個直角三角形的面積為ab/2;中間懂得小正方形邊長為b-a,則面積為(b-a)2。于是便可得如下的式子:
    4×(ab/2)+(b-a)2=c2。
    化簡后便可得:
    a2+b2=c2。
    亦即:
    c=(a2+b2)(1/2)。
    趙爽的這個證明可謂別具匠心,極富創(chuàng)新意識。他用幾何圖形的截、割、拼、補來證明代數(shù)式之間的恒等關(guān)系,既具嚴密性,又具直觀性,為中國古代以形證數(shù)、形數(shù)統(tǒng)一、代數(shù)和幾何緊密結(jié)合、互不可分的獨特風格樹立了一個典范。以后的數(shù)學(xué)家大多繼承了這一風格并且代有發(fā)展。例如稍后一點的劉徽在證明勾股定理時也是用的以形證數(shù)的方法,只是具體圖形的分合移補略有不同而已。
    中國古代數(shù)學(xué)家們對于勾股定理的發(fā)現(xiàn)和證明,在世界數(shù)學(xué)史上具有獨特的貢獻和地位。尤其是其中體現(xiàn)出來的“形數(shù)統(tǒng)一”的思想方法,更具有科學(xué)創(chuàng)新的重大意義。事實上,“形數(shù)統(tǒng)一”的思想方法正是數(shù)學(xué)發(fā)展的一個極其重要的條件。正如當代中國數(shù)學(xué)家吳文俊所說:“在中國的傳統(tǒng)數(shù)學(xué)中,數(shù)量關(guān)系與空間形式往往是形影不離地并肩發(fā)展著的......十七世紀笛卡兒解析幾何的發(fā)明,正是中國這種傳統(tǒng)思想與方法在幾百年停頓后的重現(xiàn)與繼續(xù)?!薄?BR>    定理與證明教案篇二十
    生:有一個內(nèi)角是90°,那么這個三角形就為直角三角形.。
    生:如果一個三角形,有兩個角的和是90°,那么這個三角形也是直角三角形.。
    二、講授新課。
    是不是三角形的三邊只要有兩邊的平方和等于第三邊的平方,就能得到一個直角三角形呢?
    活動3下面的三組數(shù)分別是一個三角形的三邊長?
    定理與證明教案篇二十一
    勾股定理是幾何學(xué)中的明珠,所以它充滿魅力,千百年來,人們對它的證明趨之若騖,其中有著名的數(shù)學(xué)家,也有業(yè)余數(shù)學(xué)愛好者,有普通的老百姓,也有尊貴的政要權(quán)貴,甚至有國家總統(tǒng)。也許是因為勾股定理既重要又簡單,更容易吸引人,才使它成百次地反復(fù)被人炒作,反復(fù)被人論證。1940年出版過一本名為《畢達哥拉斯命題》的勾股定理的證明專輯,其中收集了367種不同的證明方法。實際上還不止于此,有資料表明,關(guān)于勾股定理的證明方法已有500余種,僅我國清末數(shù)學(xué)家華蘅芳就提供了二十多種精彩的證法。這是任何定理無法比擬的。
    在這數(shù)百種證明方法中,有的十分精彩,有的十分簡潔,有的因為證明者身份的特殊而非常著名。
    首先介紹勾股定理的兩個最為精彩的證明,據(jù)說分別來源于中國和希臘。
    2
    劉徽在證明勾股定理時,也是用的以形證數(shù)的方法,只是具體的分合移補略有不同.劉徽的證明原也有一幅圖,可惜圖已失傳,只留下一段文字:“勾自乘為朱方,股自乘為青方,令出入相補,各從其類,因就其余不動也,合成弦方之冪.開方除之,即弦也.”后人根據(jù)這段文字補了一張圖。大意是:三角形為直角三角形,以勾a為邊的正方形為朱方,以股b為邊的正方形為青方。以盈補虛,將朱方、青放并成弦方。依其面積關(guān)系有a^+b^=c^.由于朱方、青方各有一部分在弦方內(nèi),那一部分就不動了。以勾為邊的的正方形為朱方,以股為邊的正方形為青方。以贏補虛,只要把圖中朱方(a2)的i移至i′,青方的ii移至ii′,iii移至iii′,則剛好拼好一個以弦為邊長的正方形(c的平方).由此便可證得a的`平方+b的平方=c的平方。這個證明是由三國時代魏國的數(shù)學(xué)家劉徽所提出的。在魏景元四年(即公元263年),劉徽為古籍《九章算術(shù)》作注釋。在注釋中,他畫了一幅像圖五(b)中的圖形來證明勾股定理。由於他在圖中以「青出」、「朱出」表示黃、紫、綠三個部分,又以「青入」、「朱入」解釋如何將斜邊正方形的空白部分填滿,所以后世數(shù)學(xué)家都稱這圖為「青朱入出圖」。亦有人用「出入相補」這一詞來表示這個證明的原理。
    3
    這個定理有許多證明的方法,其證明的方法可能是數(shù)學(xué)眾多定理中最多的。路明思(elishascottloomis)的pythagoreanproposition一書中總共提到367種證明方式。
    有人會嘗試以三角恒等式(例如:正弦和余弦函數(shù)的泰勒級數(shù))來證明勾股定理,但是,因為所有的基本三角恒等式都是建基于勾股定理,所以不能作為勾股定理的證明(參見循環(huán)論證)。
    利用相似三角形的證法。
    利用相似三角形證明。
    設(shè)abc為一直角三角形,直角于角c(看附圖).從點c畫上三角形的高,并將此高與ab的交叉點稱之為h。此新三角形ach和原本的三角形abc相似,因為在兩個三角形中都有一個直角(這又是由于“高”的定義),而兩個三角形都有a這個共同角,由此可知第三只角都是相等的。同樣道理,三角形cbh和三角形abc也是相似的。這些相似關(guān)系衍生出以下的比率關(guān)系:
    因為bc=a,ac=b,ab=c。
    所以a/c=hb/aandb/c=ah/b。
    可以寫成a*a=c*hbandb*b=c*ah。
    換句話說:a*a+b*b=c*c。
    [*]----為乘號。
    定理與證明教案篇二十二
    研究生考試中高等數(shù)學(xué)確實是一門比較難的課程,其中的基礎(chǔ)知識點很多,有大量的定理與重要結(jié)論,如果不系統(tǒng)地對知識進行層次化的歸類,那么考生就會覺得高數(shù)課本上的內(nèi)容多,而且學(xué)了后面就會忘記前面的內(nèi)容。對于課本中的定理與重要結(jié)論,專家建議考生將它們自己推導(dǎo)一遍,并且記住各定理,結(jié)論的應(yīng)用場景。
    另外要提醒考生的就是:微積分這個子系統(tǒng)非常重要,它是其它各子系統(tǒng)的基石,而且在概率統(tǒng)計中大量會用到微積分的理論與解題技巧,所以請務(wù)必重視。
    把握出題難度,了解常見題型的技巧。
    在現(xiàn)階段一定要有針對性地進行復(fù)習,所做題目的難度不能太小,當然也不能過于偏,而且復(fù)習要形成系統(tǒng)的知識體系結(jié)構(gòu)。將做過的題目進行總結(jié)。專家建議考生,目前階段不要過于鉆研偏題怪題。考研不是數(shù)學(xué)競賽,不會出現(xiàn)這類題目,因此完全沒必要浪費時間。復(fù)習中,遇到比較難的題目,自己獨立解決確實能顯著提高能力。但復(fù)習時間畢竟有限,在確定思考不出結(jié)果時,要及時尋求幫助。一定要避免一時性起,盯住一個題目做一個晚上的沖動。要充分借助老師、同學(xué)的幫助,將題目弄通搞懂、下次自己會做即可,不要耽誤太多時間。另外無論是大題還是小題,都要細心。每年許多考生容易在看似不起眼的選擇題和填空題上失很多分。其實選擇與填空題在數(shù)學(xué)考卷中所占的比重很大,這些題目的解答往往會“一失足成千古恨”,稍不留神,一步做錯就全軍覆沒。不能說只要考場上認真,仔細地做題就不會有“會做但做錯”的情況出現(xiàn),應(yīng)該平時做題就態(tài)度認真。
    將解題技巧變成自己的內(nèi)功。
    根據(jù)自己的總結(jié)或在權(quán)威考研輔導(dǎo)機構(gòu)的.幫助下,考生可以知道常規(guī)的題型和解題方法與技巧,但考生如何才能真正吸收消化這些知識以成為自己的知識呢?那就是要進行相當量的綜合題型的練習。因為在復(fù)習過程中,不少考生會漸漸地有能力解答一些考研的基本題目,但如果給他一道較為綜合的大題,他就無從下手了。所以要做一定量的綜合題。
    首先從心理上就不要害怕這樣的題目,因為大題目肯定是可以分解為若干個小題目的。這樣一來,考生要掌握的東西就顯然被分為了兩個大方向。一是小題目,實質(zhì)上也就是基礎(chǔ)知識點的掌握與常規(guī)題型的熟練掌握;二是要能夠?qū)⒋箢}目拆分為小題目,也就是說能夠逆出題專家的思維方式來推測此大題目是想考我們什么知識點。陷阱在哪兒?我們應(yīng)該分為幾個步驟來解這道題。這兩個方面的知識是考生平時復(fù)習整個過程中要加以思考的問題,因為基礎(chǔ)知識點要不斷地鞏固加強,將大問題細分的能力是平時的日積月累而形成的本領(lǐng)。
    定理與證明教案篇二十三
    本節(jié)課主要通過勾股定理的證明探索,使學(xué)生進一步理解和掌握勾股定理。通過利用質(zhì)疑、拼圖觀察、思考、猜想、推理論證這一過程,培養(yǎng)學(xué)生探求未知數(shù)學(xué)知識的能力和方法,培養(yǎng)學(xué)生求異思維能力、認知能力、觀察能力和獨立實踐能力。學(xué)生獨立或分組進行拼圖實驗,教師組織學(xué)生在實驗過程中發(fā)現(xiàn)的有價值的實驗結(jié)果進行交流和展示。本節(jié)課的過程由激趣、質(zhì)疑、實驗、求異、探索、交流、延伸組成。
    本節(jié)課的成功之處:
    1、創(chuàng)設(shè)情景,實例導(dǎo)入,激發(fā)學(xué)生的學(xué)習熱情。
    2、由于實現(xiàn)了教師角色的轉(zhuǎn)變,教法的創(chuàng)新,師生的平等,氣氛的活躍,學(xué)生積極參加。
    3、面向全體學(xué)生,以人為本的教育理念落實到位。整節(jié)課都是學(xué)生自主實驗、自主探索,自主完成由形到數(shù)的轉(zhuǎn)化。學(xué)生勇于上講臺展示研究成果,教師只是起到組織、引導(dǎo)作用。
    4、通過學(xué)生動手實驗,上臺發(fā)言,展示成果,體驗了成功的喜悅。學(xué)生的自信心得到培養(yǎng),個性得到張揚。通過當場展示,讓學(xué)生體會到動手實踐在解決數(shù)學(xué)問題中的重要性,同時也讓學(xué)生體會到用面積來驗證公式的直觀性、普遍性。
    5、學(xué)生的研究成果極大地豐富了學(xué)生對勾股定理的證明的認識,學(xué)生從中獲得利用已知的知識探求數(shù)學(xué)知識的能力和方法。這對學(xué)生今后的學(xué)習和將來的發(fā)展是大有裨益的。同時驗證勾股定理的證明的探究,使學(xué)生形成一種等積代換的思想,為今后的學(xué)習奠定基礎(chǔ)。
    本節(jié)課的不足之處及改進思路:
    1、小部分能力基礎(chǔ)和能力都比較差的學(xué)生在探索過程中無所事事,因此教師應(yīng)該在課前對不同層次的學(xué)生提出不同的要求,讓每個學(xué)生多清楚地知道這節(jié)課自己的任務(wù)是什么。
    2、本節(jié)課拼圖驗證的方法是以前學(xué)生很少接觸的,所以在探索過程中很多學(xué)生都顯得有些吃力。所以教師在講方法一時,應(yīng)該先介紹這種證明方法以及思路,讓學(xué)生模仿第一種方法的'基礎(chǔ)上,能輕松地總結(jié)出第二種方法,從而產(chǎn)生去探索更多方法的興趣和動力,有利于學(xué)生的數(shù)學(xué)思維的提升。
    3、對學(xué)生的人文教育和愛國教育不夠。很多學(xué)生在探索過程中遇到困難時,選擇放棄或等別人的答案。教師此時應(yīng)該注意引導(dǎo)學(xué)生要勇于克服困難,主動進行探索,提高了自身的推理能力和創(chuàng)新精神。同時教師也要不斷滲透愛國教育,培養(yǎng)學(xué)生的民族自豪感和愛國熱情。
    在我們的數(shù)學(xué)教學(xué)中,活動課是不可忽視的內(nèi)容。在這個探索的過程中,學(xué)生絕大多數(shù)是不會創(chuàng)造或發(fā)明什么的,這是一個素質(zhì)的表現(xiàn)和培養(yǎng)過程。學(xué)生得到什么結(jié)果是次要的,重要的是使學(xué)生的素質(zhì)和能力得到培養(yǎng)。這是中學(xué)數(shù)學(xué)活動課的價值取向。