高中高一數(shù)學(xué)教案(匯總16篇)

字號:

    教案的編寫需要靈活運(yùn)用教學(xué)理論和教學(xué)方法。如何編寫一份優(yōu)秀的教案呢?首先,我們需要明確教學(xué)目標(biāo),確定學(xué)生應(yīng)該達(dá)到的知識、能力和情感目標(biāo)。然后,根據(jù)教學(xué)目標(biāo),選擇合適的教學(xué)內(nèi)容和教學(xué)資源。接下來,我們應(yīng)該合理安排教學(xué)活動,采用多種多樣的教學(xué)方法,激發(fā)學(xué)生的學(xué)習(xí)興趣和積極性。此外,我們還需要關(guān)注學(xué)生的實(shí)際情況,根據(jù)不同學(xué)生的差異性制定個(gè)別化的教學(xué)方案。最后,我們應(yīng)該及時(shí)進(jìn)行教學(xué)評價(jià),檢查學(xué)生的學(xué)習(xí)效果,并對教學(xué)過程進(jìn)行反思和改進(jìn)。請參考以下范文來更好地理解教案的編寫與設(shè)計(jì)。
    高中高一數(shù)學(xué)教案篇一
    一、指導(dǎo)思想:
    使學(xué)生在九年義務(wù)教育數(shù)學(xué)課程的基礎(chǔ)上,進(jìn)一步提高作為未來公民所必要的數(shù)學(xué)素養(yǎng),以滿足個(gè)人發(fā)展與社會進(jìn)步的需要。具體目標(biāo)如下。
    1.獲得必要的數(shù)學(xué)基礎(chǔ)知識和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會其中所蘊(yùn)涵的數(shù)學(xué)思想和方法,以及它們在后續(xù)學(xué)習(xí)中的作用。通過不同形式的自主學(xué)習(xí)、探究活動,體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。
    2.提高空間想像、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理等基本能力。
    高一下學(xué)期數(shù)學(xué)教學(xué)計(jì)劃3.提高數(shù)學(xué)地提出、分析和解決問題(包括簡單的實(shí)際問題)的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨(dú)立獲取數(shù)學(xué)知識的能力。
    4.發(fā)展數(shù)學(xué)應(yīng)用意識和創(chuàng)新意識,力求對現(xiàn)實(shí)世界中蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。
    5.提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。
    6.具有一定的數(shù)學(xué)視野,逐步認(rèn)識數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會數(shù)學(xué)的美學(xué)意義,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。
    二、
    我們所使用的教材是人教版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)(a版)》,它在堅(jiān)持我國數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承,借簽,發(fā)展,創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性,時(shí)代性,典型性和可接受性等到,具有如下特點(diǎn):
    1.親和力:以生動活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學(xué)習(xí)激情。
    2.問題性:以恰時(shí)恰點(diǎn)的問題引導(dǎo)數(shù)學(xué)活動,培養(yǎng)問題意識,孕育創(chuàng)新精神。
    3.科學(xué)性與思想性:通過不同數(shù)學(xué)內(nèi)容的聯(lián)系與啟發(fā),強(qiáng)調(diào)類比,推廣,特殊化,化歸等思想方法的運(yùn)用,學(xué)習(xí)數(shù)學(xué)地思考問題的方式,提高數(shù)學(xué)思維能力,培育理性精神。
    4.時(shí)代性與應(yīng)用性:以具有時(shí)代性和現(xiàn)實(shí)感的.素材創(chuàng)設(shè)情境,加強(qiáng)數(shù)學(xué)活動,發(fā)展應(yīng)用意識。
    1)選取與內(nèi)容密切相關(guān)的,典型的,豐富的和學(xué)生熟悉的素材,用生動活潑的語言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對數(shù)學(xué)的親切感,引發(fā)學(xué)生看個(gè)究竟的沖動,以達(dá)到培養(yǎng)其興趣的目的。
    2)通過觀察,思考,探究等欄目,引發(fā)學(xué)生的思考和探索活動,切實(shí)改進(jìn)學(xué)生的學(xué)習(xí)方式。
    3)在教學(xué)中強(qiáng)調(diào)類比,推廣,特殊化,化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣。
    1、基本情況:12班共66人,男生22人,女生44人;本班相對而言,數(shù)學(xué)尖子約3人,中上等生約10人,中等生約11人,中下生約20人,后進(jìn)生約12人。13班共59人,男生39人,女生20人;本班相對而言,數(shù)學(xué)尖子約12人,中上等生約12人,中等生約21人,中下生約7人,后進(jìn)生約7人。
    2、兩個(gè)班均屬普高班,學(xué)習(xí)情況良好,但學(xué)生自覺性差,自我控制能力弱,因此在教學(xué)中需時(shí)時(shí)提醒學(xué)生,培養(yǎng)其自覺性。班級存在的最大問題是計(jì)算能力太差,學(xué)生不喜歡去算題,嫌麻煩,只注重思路,因此在以后的教學(xué)中,重點(diǎn)在于培養(yǎng)學(xué)生的計(jì)算能力,同時(shí)要進(jìn)一步提高其思維能力。同時(shí),由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時(shí)適機(jī)補(bǔ)充一些內(nèi)容。因此時(shí)間上可能仍然吃緊。同時(shí),其底子薄弱,因此在教學(xué)時(shí)只能注重基礎(chǔ)再基礎(chǔ),爭取每一堂課落實(shí)一個(gè)知識點(diǎn),掌握一個(gè)知識點(diǎn)。
    a)激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進(jìn)步。
    b)注意從實(shí)例出發(fā),從感性提高到理性;注意運(yùn)用對比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學(xué)生思考。
    c)加強(qiáng)培養(yǎng)學(xué)生的邏輯思維能力就解決實(shí)際問題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育。
    d)抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力。
    e)自始至終貫徹教學(xué)四環(huán)節(jié),針對不同的教材內(nèi)容選擇不同教法。
    高中高一數(shù)學(xué)教案篇二
    數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科。因此,在教學(xué)中,不僅要使學(xué)生“知其然”而且要使學(xué)生“知其所以然”。所以在學(xué)生為主體,教師為主導(dǎo)的原則下,要充分揭示獲取知識和方法的思維過程。因此本節(jié)課我以建構(gòu)主義的“創(chuàng)設(shè)問題情境——提出數(shù)學(xué)問題——嘗試解決問題——驗(yàn)證解決方法”為主,主要采用觀察、啟發(fā)、類比、引導(dǎo)、探索相結(jié)合的教學(xué)方法。在教學(xué)手段上,則采用多媒體輔助教學(xué),將抽象問題形象化,使教學(xué)目標(biāo)體現(xiàn)的更加完美。
    三角函數(shù)的誘導(dǎo)公式是普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(人教a版)數(shù)學(xué)必修四,第一章第三節(jié)的內(nèi)容,其主要內(nèi)容是三角函數(shù)誘導(dǎo)公式中的公式(二)至公式(六)。本節(jié)是第一課時(shí),教學(xué)內(nèi)容為公式(二)、(三)、(四)。教材要求通過學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)的定義和誘導(dǎo)公式(一)的基礎(chǔ)上,利用對稱思想發(fā)現(xiàn)任意角、終邊的對稱關(guān)系,發(fā)現(xiàn)他們與單位圓的交點(diǎn)坐標(biāo)之間關(guān)系,進(jìn)而發(fā)現(xiàn)他們的三角函數(shù)值的關(guān)系,即發(fā)現(xiàn)、掌握、應(yīng)用三角函數(shù)的誘導(dǎo)公式公式(二)、(三)、(四)。同時(shí)教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法,為培養(yǎng)學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣提出了要求。為此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位。
    本節(jié)課的授課對象是本校高一(x)班全體同學(xué),本班學(xué)生水平處于中等偏下,但本班學(xué)生具有善于動手的良好學(xué)習(xí)習(xí)慣,所以采用發(fā)現(xiàn)的教學(xué)方法應(yīng)該能輕松的完成本節(jié)課的教學(xué)內(nèi)容。
    (1)基礎(chǔ)知識目標(biāo):理解誘導(dǎo)公式的發(fā)現(xiàn)過程,掌握正弦、余弦、正切的誘導(dǎo)公式;
    (4)個(gè)性品質(zhì)目標(biāo):通過誘導(dǎo)公式的學(xué)習(xí)和應(yīng)用,感受事物之間的普通聯(lián)系規(guī)律,運(yùn)用化歸等數(shù)學(xué)思想方法,揭示事物的本質(zhì)屬性,培養(yǎng)學(xué)生的唯物史觀。
    1、教學(xué)重點(diǎn):理解并掌握誘導(dǎo)公式。
    2、教學(xué)難點(diǎn):正確運(yùn)用誘導(dǎo)公式,求三角函數(shù)值,化簡三角函數(shù)式。
    “授人以魚不如授之以魚”,作為一名老師,我們不僅要傳授給學(xué)生數(shù)學(xué)知識,更重要的是傳授給學(xué)生數(shù)學(xué)思想方法,如何實(shí)現(xiàn)這一目的,要求我們每一位教者苦心鉆研、認(rèn)真探究。下面我從教法、學(xué)法、預(yù)期效果等三個(gè)方面做如下分析。
    數(shù)學(xué)教學(xué)是數(shù)學(xué)思維活動的教學(xué),而不僅僅是數(shù)學(xué)活動的結(jié)果,數(shù)學(xué)學(xué)習(xí)的目的不僅僅是為了獲得數(shù)學(xué)知識,更主要作用是為了訓(xùn)練人的思維技能,提高人的思維品質(zhì)。
    在本節(jié)課的教學(xué)過程中,本人以學(xué)生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結(jié)合等數(shù)學(xué)思想方法,采用提出問題、啟發(fā)引導(dǎo)、共同探究、綜合應(yīng)用等教學(xué)模式,還給學(xué)生“時(shí)間”、“空間”,由易到難,由特殊到一般,盡力營造輕松的學(xué)習(xí)環(huán)境,讓學(xué)生體味學(xué)習(xí)的快樂和成功的喜悅。
    “現(xiàn)代的文盲不是不識字的人,而是沒有掌握學(xué)習(xí)方法的人”,很多課堂教學(xué)常常以高起點(diǎn)、大容量、快推進(jìn)的做法,以便教給學(xué)生更多的知識點(diǎn),卻忽略了學(xué)生接受知識需要時(shí)間消化,進(jìn)而泯滅了學(xué)生學(xué)習(xí)的興趣與熱情。如何能讓學(xué)生程度的消化知識,提高學(xué)習(xí)熱情是教者必須思考的問題。
    在本節(jié)課的教學(xué)過程中,本人引導(dǎo)學(xué)生的學(xué)法為思考問題、共同探討、解決問題簡單應(yīng)用、重現(xiàn)探索過程、練習(xí)鞏固。讓學(xué)生參與探索的全部過程,讓學(xué)生在獲取新知識及解決問題的方法后,合作交流、共同探索,使之由被動學(xué)習(xí)轉(zhuǎn)化為主動的自主學(xué)習(xí)。
    本節(jié)課預(yù)期讓學(xué)生能正確理解誘導(dǎo)公式的發(fā)現(xiàn)、證明過程,掌握誘導(dǎo)公式,并能熟練應(yīng)用誘導(dǎo)公式了解一些簡單的化簡問題。
    高中高一數(shù)學(xué)教案篇三
    教學(xué)目的:
    (1)使學(xué)生初步理解集合的概念,知道常用數(shù)集的概念及記法。
    (2)使學(xué)生初步了解“屬于”關(guān)系的意義。
    (3)使學(xué)生初步了解有限集、無限集、空集的意義。
    教學(xué)重點(diǎn):集合的基本概念及表示方法。
    教學(xué)難點(diǎn):運(yùn)用集合的兩種常用表示方法——列舉法與描述法,正確表示。
    一些簡單的集合。
    授課類型:新授課。
    課時(shí)安排:1課時(shí)。
    教具:多媒體、實(shí)物投影儀。
    內(nèi)容分析:
    高中高一數(shù)學(xué)教案篇四
    (6)在知識學(xué)習(xí)的基礎(chǔ)上,培養(yǎng)學(xué)生簡單推理的技能.。
    重點(diǎn)是判斷復(fù)合命題真假的方法;難點(diǎn)是對“或”的含義的理解.。
    1.新課導(dǎo)入。
    初一平面幾何中曾學(xué)過命題,請同學(xué)們舉一個(gè)命題的例子.(板書:命題.)。
    (從初中接觸過的“命題”入手,提出問題,進(jìn)而學(xué)習(xí)邏輯的有關(guān)知識.)。
    學(xué)生舉例:平行四邊形的對角線互相平.……(1)。
    兩直線平行,同位角相等.…………(2)。
    教師提問:“……相等的角是對頂角”是不是命題?……(3)。
    (同學(xué)議論結(jié)果,答案是肯定的.)。
    教師提問:什么是命題?
    (學(xué)生進(jìn)行回憶、思考.)。
    概念總結(jié):對一件事情作出了判斷的語句叫做命題.。
    (教師肯定了同學(xué)的回答,并作板書.)。
    (教師利用投影片,和學(xué)生討論以下問題.)。
    例1判斷以下各語句是不是命題,若是,判斷其真假:
    2.講授新課。
    (片刻后請同學(xué)舉手回答,一共講了四個(gè)問題.師生一道歸納如下.)。
    (1)什么叫做命題?
    可以判斷真假的語句叫做命題.。
    (2)介紹邏輯聯(lián)結(jié)詞“或”、“且”、“非”.。
    命題可分為簡單命題和復(fù)合命題.。
    (4)命題的表示:用p,q,r,s,……來表示.。
    (教師根據(jù)學(xué)生回答的情況作補(bǔ)充和強(qiáng)調(diào),特別是對復(fù)合命題的概念作出分析和展開.)。
    對于給出“若p則q”形式的復(fù)合命題,應(yīng)能找到條件p和結(jié)論q.。
    3.鞏固新課。
    (1)5;
    (2)0.5非整數(shù);
    (3)內(nèi)錯(cuò)角相等,兩直線平行;
    (4)菱形的對角線互相垂直且平分;
    (5)平行線不相交;
    (6)若ab=0,則a=0.。
    (讓學(xué)生有充分的時(shí)間進(jìn)行辨析.教材中對“若…則…”不作要求,教師可以根據(jù)學(xué)生的情況作些補(bǔ)充.)。
    高中高一數(shù)學(xué)教案篇五
    2、實(shí)際問題中的有關(guān)術(shù)語、名稱:
    (1)仰角與俯角:均是指視線與水平線所成的角;
    (2)方位角:是指從正北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線的夾角;
    (3)方向角:常見的`如:正東方向、東南方向、北偏東、南偏西等;
    3、用正弦余弦定理解實(shí)際問題的常見題型有:
    測量距離、測量高度、測量角度、計(jì)算面積、航海問題、物理問題等;
    2、實(shí)際問題中的有關(guān)術(shù)語、名稱:
    (1)仰角與俯角:均是指視線與水平線所成的角;
    (2)方位角:是指從正北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線的夾角;
    (3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;
    3、用正弦余弦定理解實(shí)際問題的常見題型有:
    測量距離、測量高度、測量角度、計(jì)算面積、航海問題、物理問題等;
    一、知識歸納
    2、實(shí)際問題中的有關(guān)術(shù)語、名稱:
    (1)仰角與俯角:均是指視線與水平線所成的角;
    (2)方位角:是指從正北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線的夾角;
    (3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;
    3、用正弦余弦定理解實(shí)際問題的常見題型有:
    測量距離、測量高度、測量角度、計(jì)算面積、航海問題、物理問題等;
    二、例題討論
    一)利用方向角構(gòu)造三角形
    四)測量角度問題
    例4、在一個(gè)特定時(shí)段內(nèi),以點(diǎn)e為中心的7海里以內(nèi)海域被設(shè)為警戒水域.點(diǎn)e正北55海里處有一個(gè)雷達(dá)觀測站a.某時(shí)刻測得一艘勻速直線行駛的船只位于點(diǎn)a北偏東。
    高中高一數(shù)學(xué)教案篇六
    1.了解函數(shù)的單調(diào)性和奇偶性的概念,掌握有關(guān)證明和判斷的基本方法.
    (1)了解并區(qū)分增函數(shù),減函數(shù),單調(diào)性,單調(diào)區(qū)間,奇函數(shù),偶函數(shù)等概念.
    (2)能從數(shù)和形兩個(gè)角度認(rèn)識單調(diào)性和奇偶性.
    (3)能借助圖象判斷一些函數(shù)的單調(diào)性,能利用定義證明某些函數(shù)的單調(diào)性;能用定義判斷某些函數(shù)的奇偶性,并能利用奇偶性簡化一些函數(shù)圖象的繪制過程.
    2.通過函數(shù)單調(diào)性的證明,提高學(xué)生在代數(shù)方面的推理論證能力;通過函數(shù)奇偶性概念的形成過程,培養(yǎng)學(xué)生的觀察,歸納,抽象的能力,同時(shí)滲透數(shù)形結(jié)合,從特殊到一般的數(shù)學(xué)思想.
    3.通過對函數(shù)單調(diào)性和奇偶性的理論研究,增學(xué)生對數(shù)學(xué)美的體驗(yàn),培養(yǎng)樂于求索的精神,形成科學(xué),嚴(yán)謹(jǐn)?shù)难芯繎B(tài)度.
    (1)函數(shù)單調(diào)性的概念。包括增函數(shù)、減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關(guān)系.
    (2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像.
    (1)本節(jié)教學(xué)的重點(diǎn)是函數(shù)的單調(diào)性,奇偶性概念的形成與認(rèn)識.教學(xué)的難點(diǎn)是領(lǐng)悟函數(shù)單調(diào)性, 奇偶性的本質(zhì),掌握單調(diào)性的證明.
    (2)函數(shù)的單調(diào)性這一性質(zhì)學(xué)生在初中所學(xué)函數(shù)中曾經(jīng)了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準(zhǔn)確的數(shù)學(xué)語言去刻畫它.這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對高一的學(xué)生來說是比較困難的,因此要在概念的形成上重點(diǎn)下功夫.單調(diào)性的證明是學(xué)生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,學(xué)生在代數(shù)論證推理方面的能力是比較弱的,許多學(xué)生甚至還搞不清什么是代數(shù)證明,也沒有意識到它的重要性,所以單調(diào)性的證明自然就是教學(xué)中的難點(diǎn).
    (1)函數(shù)單調(diào)性概念引入時(shí),可以先從學(xué)生熟悉的一次函數(shù),,二次函數(shù).反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點(diǎn)感性認(rèn)識出發(fā),通過問題逐步向抽象的定義靠攏.如可以設(shè)計(jì)這樣的問題:圖象怎么就升上去了?可以從點(diǎn)的坐標(biāo)的角度,也可以從自變量與函數(shù)值的關(guān)系的角度來解釋,引導(dǎo)學(xué)生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學(xué)語言表示出來.在這個(gè)過程中對一些關(guān)鍵的詞語(某個(gè)區(qū)間,任意,都有)的理解與必要性的認(rèn)識就可以融入其中,將概念的形成與認(rèn)識結(jié)合起來.
    (2)函數(shù)單調(diào)性證明的步驟是嚴(yán)格規(guī)定的,要讓學(xué)生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時(shí),讓學(xué)生明確變換的目標(biāo),到什么程度就可以斷號,在例題的選擇上應(yīng)有不同的變換目標(biāo)為選題的標(biāo)準(zhǔn),以便幫助學(xué)生總結(jié)規(guī)律.
    函數(shù)的奇偶性概念引入時(shí),可設(shè)計(jì)一個(gè)課件,以的圖象為例,讓自變量互為相反數(shù),觀察對應(yīng)的函數(shù)值的變化規(guī)律,先從具體數(shù)值開始,逐漸讓在數(shù)軸上動起來,觀察任意性,再讓學(xué)生把看到的用數(shù)學(xué)表達(dá)式寫出來.經(jīng)歷了這樣的過程,再得到等式時(shí),就比較容易體會它代表的是無數(shù)多個(gè)等式,是個(gè)恒等式.關(guān)于定義域關(guān)于原點(diǎn)對稱的問題,也可借助課件將函數(shù)圖象進(jìn)行多次改動,幫助學(xué)生發(fā)現(xiàn)定義域的對稱性,同時(shí)還可以借助圖象說明定義域關(guān)于原點(diǎn)對稱只是函數(shù)具備奇偶性的必要條件而不是充分條件.
    高中高一數(shù)學(xué)教案篇七
    本節(jié)的重點(diǎn)是二次根式的化簡.本章自始至終圍繞著二次根式的化簡與計(jì)算進(jìn)行,而二次根式的化簡不但涉及到前面學(xué)習(xí)過的算術(shù)平方根、二次根式等概念與二次根式的運(yùn)算性質(zhì),還要牽涉到絕對值以及各種非負(fù)數(shù)、因式分解等知識,在應(yīng)用中常常需要對字母進(jìn)行分類討論.
    本節(jié)的難點(diǎn)是正確理解與應(yīng)用公式.這個(gè)公式的表達(dá)形式對學(xué)生來說,比較生疏,而實(shí)際運(yùn)用時(shí),則要牽涉到對字母取值范圍的討論,學(xué)生往往容易出現(xiàn)錯(cuò)誤.
    教法建議
    1.性質(zhì)的引入方法很多,以下2種比較常用:
    (1)設(shè)計(jì)問題引導(dǎo)啟發(fā):由設(shè)計(jì)的問題
    1)、、各等于什么?
    2)、、各等于什么?
    啟發(fā)、引導(dǎo)學(xué)生猜想出
    (2)從算術(shù)平方根的意義引入.
    2.性質(zhì)的鞏固有兩個(gè)方面需要注意:
    (1)注意與性質(zhì)進(jìn)行對比,可出幾道類型不同的題進(jìn)行比較;
    (2)學(xué)生初次接觸這種形式的表示方式,在教學(xué)時(shí)要注意細(xì)分層次加以鞏固,如單個(gè)數(shù)字,單個(gè)字母,單項(xiàng)式,可進(jìn)行因式分解的多項(xiàng)式,等等.
    (第1課時(shí))
    1.掌握二次根式的性質(zhì)
    2.能夠利用二次根式的性質(zhì)化簡二次根式
    3.通過本節(jié)的學(xué)習(xí)滲透分類討論的數(shù)學(xué)思想和方法
    對比、歸納、總結(jié)
    1.重點(diǎn):理解并掌握二次根式的性質(zhì)
    2.難點(diǎn):理解式子中的可以取任意實(shí)數(shù),并能根據(jù)字母的取值范圍正確地化簡有關(guān)的二次根式.
    1課時(shí)
    五、教b具學(xué)具準(zhǔn)備
    投影儀、膠片、多媒體
    復(fù)習(xí)對比,歸納整理,應(yīng)用提高,以學(xué)生活動為主
    一、導(dǎo)入新課
    我們知道,式子()表示非負(fù)數(shù)的算術(shù)平方根.
    問:式子的意義是什么?被開方數(shù)中的表示的是什么數(shù)?
    答:式子表示非負(fù)數(shù)的算術(shù)平方根,即,且,從而可以取任意實(shí)數(shù).
    二、新課
    計(jì)算下列各題,并回答以下問題:
    (1);(2);(3);
    1.各小題中被開方數(shù)的冪的底數(shù)都是什么數(shù)?
    2.各小題的結(jié)果和相應(yīng)的被開方數(shù)的冪的底數(shù)有什么關(guān)系?
    3.用字母表示被開方數(shù)的冪的底數(shù),將有怎樣的結(jié)論?并用語言敘述你的結(jié)論.
    高中高一數(shù)學(xué)教案篇八
    下面給出教學(xué)實(shí)施過程設(shè)計(jì)的簡要思路:
    (一)引入的設(shè)計(jì)
    前邊學(xué)習(xí)了如何根據(jù)所給條件求出直線方程的方法,看下面問題:
    問:說出過點(diǎn) (2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么?
    答:直線方程是 ,屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次.
    肯定學(xué)生回答,并糾正學(xué)生中不規(guī)范的表述.再看一個(gè)問題:
    問:求出過點(diǎn) , 的直線的方程,并觀察方程屬于哪一類,為什么?
    啟發(fā):你在想什么(或你想到了什么)?誰來談?wù)劊扛餍〗M可以討論討論.
    學(xué)生紛紛談出自己的想法,教師邊評價(jià)邊啟發(fā)引導(dǎo),使學(xué)生的認(rèn)識統(tǒng)一到如下問題:
    【問題1】“任意直線的方程都是二元一次方程嗎?”
    (二)本節(jié)主體內(nèi)容教學(xué)的設(shè)計(jì)
    學(xué)生或獨(dú)立研究,或合作研究,教師巡視指導(dǎo).
    經(jīng)過一定時(shí)間的研究,教師組織開展集體討論.首先讓學(xué)生陳述解決思路或解決方案:
    思路一:…
    思路二:…
    ……
    教師組織評價(jià),確定最優(yōu)方案(其它待課下研究)如下:
    按斜率是否存在,任意直線 的位置有兩種可能,即斜率 存在或不存在.
    當(dāng) 存在時(shí),直線 的截距 也一定存在,直線 的方程可表示為 ,它是二元一次方程.
    當(dāng) 不存在時(shí),直線 的方程可表示為 形式的方程,它是二元一次方程嗎?
    學(xué)生有的認(rèn)為是有的認(rèn)為不是,此時(shí)教師引導(dǎo)學(xué)生,逐步認(rèn)識到把它看成二元一次方程的合理性:
    綜合兩種情況,我們得出如下結(jié)論:
    同學(xué)們注意:這樣表達(dá)起來是不是很啰嗦,能不能有一個(gè)更好的表達(dá)?
    學(xué)生們不難得出:二者可以概括為統(tǒng)一的形式.
    這樣上邊的結(jié)論可以表述如下:
    啟發(fā):任何一條直線都有這種形式的方程.你是否覺得還有什么與之相關(guān)的問題呢?
    【問題2】任何形如 (其中 、 不同時(shí)為0)的二元一次方程都表示一條直線嗎?
    師生共同討論,評價(jià)不同思路,達(dá)成共識:
    (1)當(dāng) 時(shí),方程可化為
    這是表示斜率為 、在 軸上的截距為 的直線.
    (2)當(dāng) 時(shí),由于 、 不同時(shí)為0,必有 ,方程可化為
    這表示一條與 軸垂直的直線.
    因此,得到結(jié)論:
    為方便,我們把 (其中 、 不同時(shí)為0)稱作直線方程的一般式是合理的.
    【動畫演示】
    演示“直線各參數(shù)”文件,體會任何二元一次方程都表示一條直線.
    (三)練習(xí)鞏固、總結(jié)提高、板書和作業(yè)等環(huán)節(jié)的設(shè)計(jì)
    略
    高中高一數(shù)學(xué)教案篇九
    熟悉兩角和與差的正、余公式的推導(dǎo)過程,提高邏輯推理能力。
    掌握兩角和與差的正、余弦公式,能用公式解決相關(guān)問題。
    教學(xué)重難點(diǎn)。
    熟練兩角和與差的正、余弦公式的正用、逆用和變用技巧。
    兩角差的余弦公式。
    用-b代替b看看有什么結(jié)果?
    高中高一數(shù)學(xué)教案篇十
    突出重點(diǎn).培養(yǎng)能力.。
    三、課堂練習(xí)。
    教材第13頁練習(xí)1、2、3、4.。
    【助練習(xí)】第13頁練習(xí)4(1)中用一個(gè)方向的斜平行線段表示,用另一方向的平行線段表示如圖:
    凡有陰影部分即為所求.。
    四、小結(jié)。
    提綱式(略).再一次突出交集和并集兩個(gè)概念中“且”,“或”的含義的不同.。
    五、作業(yè)。
    習(xí)題1至8.。
    筆練結(jié)合板書.。
    傾聽.修改練習(xí).掌握方法.。
    觀察.思考.傾聽.理解.記憶.。
    傾聽.理解.記憶.。
    回憶、再現(xiàn)內(nèi)容.。
    落實(shí)。
    介紹解題技能技巧.。
    內(nèi)容條理化.。
    課堂教學(xué)設(shè)計(jì)說明。
    2.反演律可根據(jù)學(xué)生實(shí)際酌情使用.。
    高中高一數(shù)學(xué)教案篇十一
    了解雙曲線的定義,幾何圖形和標(biāo)準(zhǔn)方程,知道它的簡單性質(zhì)。
    漸近線方程是,離心率,若點(diǎn)是雙曲線上的點(diǎn),則,。
    2、又曲線的左支上一點(diǎn)到左焦點(diǎn)的距離是7,則這點(diǎn)到雙曲線的右焦點(diǎn)的距離是
    3、經(jīng)過兩點(diǎn)的雙曲線的標(biāo)準(zhǔn)方程是。
    4、雙曲線的漸近線方程是,則該雙曲線的離心率等于。
    5、與雙曲線有公共的漸近線,且經(jīng)過點(diǎn)的雙曲線的方程為
    1、雙曲線的離心率等于,且與橢圓有公共焦點(diǎn),求該雙曲線的方程。
    2、已知橢圓具有性質(zhì):若是橢圓上關(guān)于原點(diǎn)對稱的兩個(gè)點(diǎn),點(diǎn)是橢圓上任意一點(diǎn),當(dāng)直線的斜率都存在,并記為時(shí),那么之積是與點(diǎn)位置無關(guān)的定值,試對雙曲線寫出具有類似特性的性質(zhì),并加以證明。
    3、設(shè)雙曲線的半焦距為,直線過兩點(diǎn),已知原點(diǎn)到直線的距離為,求雙曲線的離心率。
    1、雙曲線上一點(diǎn)到一個(gè)焦點(diǎn)的距離為,則它到另一個(gè)焦點(diǎn)的距離為。
    2、與雙曲線有共同的漸近線,且經(jīng)過點(diǎn)的雙曲線的一個(gè)焦點(diǎn)到一條漸近線的距離是。
    3、若雙曲線上一點(diǎn)到它的右焦點(diǎn)的距離是,則點(diǎn)到軸的距離是
    4、過雙曲線的左焦點(diǎn)的直線交雙曲線于兩點(diǎn),若。則這樣的'直線一共有條。
    1、已知雙曲線的焦點(diǎn)到漸近線的距離是其頂點(diǎn)到漸近線距離的2倍,則該雙曲線的離心率
    2、已知雙曲線的焦點(diǎn)為,點(diǎn)在雙曲線上,且,則點(diǎn)到軸的距離為。
    3、雙曲線的焦距為
    4、已知雙曲線的一個(gè)頂點(diǎn)到它的一條漸近線的距離為,則
    5、設(shè)是等腰三角形,,則以為焦點(diǎn)且過點(diǎn)的雙曲線的離心率為。
    高中高一數(shù)學(xué)教案篇十二
    1.在九年義務(wù)教育基礎(chǔ)上,使學(xué)生進(jìn)一步學(xué)習(xí)并掌握職業(yè)崗位和生活中所必要的數(shù)學(xué)基礎(chǔ)知識。2.培養(yǎng)學(xué)生的計(jì)算技能、計(jì)算工具使用技能和數(shù)據(jù)處理技能,培養(yǎng)學(xué)生的觀察能力、空間想象能力、分析與解決問題能力和數(shù)學(xué)思維能力。
    本課程的教學(xué)內(nèi)容由基礎(chǔ)模塊、職業(yè)模塊和拓展模塊三個(gè)部分構(gòu)成。
    1.基礎(chǔ)模塊是各專業(yè)學(xué)生必修的基礎(chǔ)性內(nèi)容和應(yīng)達(dá)到的基本要求,教學(xué)時(shí)數(shù)為128學(xué)時(shí)。2.職業(yè)模塊是適應(yīng)學(xué)生學(xué)習(xí)相關(guān)專業(yè)需要的限定選修內(nèi)容,各學(xué)校根據(jù)實(shí)際情況進(jìn)行選擇和安排教學(xué),教學(xué)時(shí)數(shù)為32~64學(xué)時(shí)。
    (一)本大綱教學(xué)要求用語的表述1.認(rèn)知要求(分為三個(gè)層次)
    了解:初步知道知識的含義及其簡單應(yīng)用。
    理解:懂得知識的概念和規(guī)律(定義、定理、法則等)以及與其他相關(guān)知識的聯(lián)系。掌握:能夠應(yīng)用知識的概念、定義、定理、法則去解決一些問題。2.技能與能力培養(yǎng)要求(分為三項(xiàng)技能與四項(xiàng)能力)
    計(jì)算技能:根據(jù)法則、公式,或按照一定的操作步驟,正確地進(jìn)行運(yùn)算求解。計(jì)算工具使用技能:正確使用科學(xué)型計(jì)算器及常用的數(shù)學(xué)工具軟件。數(shù)據(jù)處理技能:按要求對數(shù)據(jù)(數(shù)據(jù)表格)進(jìn)行處理并提取有關(guān)信息。觀察能力:根據(jù)數(shù)據(jù)趨勢,數(shù)量關(guān)系或圖形、圖示,描述其規(guī)律。
    空間想象能力:依據(jù)文字、語言描述,或較簡單的幾何體及其組合,想象相應(yīng)的空間圖形;能夠在基本圖形中找出基本元素及其位置關(guān)系,或根據(jù)條件畫出圖形。
    分析與解決問題能力:能對工作和生活中的簡單數(shù)學(xué)相關(guān)問題,作出分析并運(yùn)用適當(dāng)?shù)臄?shù)學(xué)方法予以解決。
    數(shù)學(xué)思維能力:依據(jù)所學(xué)的數(shù)學(xué)知識,運(yùn)用類比、歸納、綜合等方法,對數(shù)學(xué)及其應(yīng)用問題能進(jìn)行有條理的思考、判斷、推理和求解;針對不同的問題(或需求),會選擇合適的模型(模式)。
    (二)教學(xué)內(nèi)容與要求1.基礎(chǔ)模塊(128學(xué)時(shí))第1單元集合(10學(xué)時(shí))
    第2單元不等式(8學(xué)時(shí))
    第3單元函數(shù)(12學(xué)時(shí))
    第4單元指數(shù)函數(shù)與對數(shù)函數(shù)(12學(xué)時(shí))
    第5單元三角函數(shù)(18學(xué)時(shí))
    第6單元數(shù)列(10學(xué)時(shí))
    第7單元平面向量(矢量)(10學(xué)時(shí))
    第8單元直線和圓的方程(18學(xué)時(shí))
    第9單元立體幾何(14學(xué)時(shí))
    第10單元概率與統(tǒng)計(jì)初步(16學(xué)時(shí))
    2.職業(yè)模塊
    第1單元三角計(jì)算及其應(yīng)用(16學(xué)時(shí))
    第2單元坐標(biāo)變換與參數(shù)方程(12學(xué)時(shí))
    第3單元復(fù)數(shù)及其應(yīng)用(10學(xué)時(shí))
    高中高一數(shù)學(xué)教案篇十三
    教學(xué)目標(biāo):理解集合的概念;掌握集合的三種表示方法,理解集合中元素的三性及元素與集合的關(guān)系;掌握有關(guān)符號及術(shù)語。
    教學(xué)過程:
    一、閱讀下列語句:
    1)全體自然數(shù)0,1,2,3,4,5,
    2)代數(shù)式.
    3)拋物線上所有的點(diǎn)。
    4)今年本校高一(1)(或(2))班的全體學(xué)生。
    5)本校實(shí)驗(yàn)室的所有天平。
    6)本班級全體高個(gè)子同學(xué)。
    7)著名的科學(xué)家。
    上述每組語句所描述的對象是否是確定的?
    二、1)集合:
    2)集合的元素:
    3)集合按元素的個(gè)數(shù)分,可分為1)__________2)_________。
    三、集合中元素的'三個(gè)性質(zhì):
    四、元素與集合的關(guān)系:1)____________2)____________。
    五、特殊數(shù)集專用記號:
    4)有理數(shù)集______5)實(shí)數(shù)集_____6)空集____。
    六、集合的表示方法:
    1)。
    2)。
    3)。
    七、例題講解:
    例1、中三個(gè)元素可構(gòu)成某一個(gè)三角形的三邊長,那么此三角形一定不是()。
    a,直角三角形b,銳角三角形c,鈍角三角形d,等腰三角形。
    例2、用適當(dāng)?shù)姆椒ū硎鞠铝屑?,然后說出它們是有限集還是無限集?
    1)地球上的四大洋構(gòu)成的集合;。
    2)函數(shù)的全體值的集合;。
    3)函數(shù)的全體自變量的集合;。
    4)方程組解的集合;。
    5)方程解的集合;。
    6)不等式的解的集合;。
    7)所有大于0且小于10的奇數(shù)組成的集合;。
    8)所有正偶數(shù)組成的集合;。
    例3、用符號或填空:
    1)______q,0_____n,_____z,0_____。
    2)______,_____。
    3)3_____,
    4)設(shè),,則。
    例4、用列舉法表示下列集合;。
    1.
    2.
    3.
    4.
    例5、用描述法表示下列集合。
    1.所有被3整除的數(shù)。
    2.圖中陰影部分點(diǎn)(含邊界)的坐標(biāo)的集合。
    課堂練習(xí):。
    例7、已知:,若中元素至多只有一個(gè),求的取值范圍。
    思考題:數(shù)集a滿足:若,則,證明1):若2,則集合中還有另外兩個(gè)元素;2)若則集合a不可能是單元素集合。
    小結(jié):
    作業(yè)班級姓名學(xué)號。
    1.下列集合中,表示同一個(gè)集合的是()。
    a.m=,n=b.m=,n=。
    c.m=,n=d.m=,n=。
    2.m=,x=,y=,,.則()。
    a.b.c.d.
    3.方程組的解集是____________________.
    4.在(1)難解的題目,(2)方程在實(shí)數(shù)集內(nèi)的解,(3)直角坐標(biāo)平面內(nèi)第四象限的一些點(diǎn),(4)很多多項(xiàng)式。能夠組成集合的序號是________________.
    5.設(shè)集合a=,b=,
    c=,d=,e=。
    其中有限集的個(gè)數(shù)是____________.
    6.設(shè),則集合中所有元素的和為。
    7.設(shè)x,y,z都是非零實(shí)數(shù),則用列舉法將所有可能的值組成的集合表示為。
    8.已知f(x)=x2-ax+b,(a,br),a=,b=,。
    若a=,試用列舉法表示集合b=。
    9.把下列集合用另一種方法表示出來:
    (1)(2)。
    (3)(4)。
    10.設(shè)a,b為整數(shù),把形如a+b的一切數(shù)構(gòu)成的集合記為m,設(shè),試判斷x+y,x-y,xy是否屬于m,說明理由。
    11.已知集合a=。
    (1)若a中只有一個(gè)元素,求a的值,并求出這個(gè)元素;。
    (2)若a中至多只有一個(gè)元素,求a的取值集合。
    12.若-3,求實(shí)數(shù)a的值。
    【總結(jié)】20xx年已經(jīng)到來,新的一年數(shù)學(xué)網(wǎng)會為您整理更多更好的文章,希望本文:集合含義及其表示能給您帶來幫助!
    高中高一數(shù)學(xué)教案篇十四
    1.知識與技能:掌握畫三視圖的基本技能,豐富學(xué)生的空間想象力。
    2.過程與方法:通過學(xué)生自己的親身實(shí)踐,動手作圖,體會三視圖的作用。
    3.情感態(tài)度與價(jià)值觀:提高學(xué)生空間想象力,體會三視圖的作用。
    難點(diǎn):識別三視圖所表示的空間幾何體。
    觀察、動手實(shí)踐、討論、類比。
    (一)創(chuàng)設(shè)情景,揭開課題
    展示廬山的風(fēng)景圖——“橫看成嶺側(cè)看成峰,遠(yuǎn)近高低各不同”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實(shí)反映出物體,我們可從多角度觀看物體。
    (二)講授新課
    1、中心投影與平行投影:
    中心投影:光由一點(diǎn)向外散射形成的投影;
    平行投影:在一束平行光線照射下形成的投影。
    正投影:在平行投影中,投影線正對著投影面。
    2、三視圖:
    正視圖:光線從幾何體的前面向后面正投影,得到的投影圖;
    側(cè)視圖:光線從幾何體的左面向右面正投影,得到的投影圖;
    俯視圖:光線從幾何體的上面向下面正投影,得到的投影圖。
    三視圖:幾何體的正視圖、側(cè)視圖和俯視圖統(tǒng)稱為幾何體的三視圖。
    三視圖的畫法規(guī)則:長對正,高平齊,寬相等。
    長對正:正視圖與俯視圖的長相等,且相互對正;
    高平齊:正視圖與側(cè)視圖的高度相等,且相互對齊;
    寬相等:俯視圖與側(cè)視圖的寬度相等。
    3、畫長方體的三視圖:
    正視圖、側(cè)視圖和俯視圖分別是從幾何體的正前方、正左方和正上方觀察到有幾何體的正投影圖,它們都是平面圖形。
    長方體的三視圖都是長方形,正視圖和側(cè)視圖、側(cè)視圖和俯視圖、俯視圖和正視圖都各有一條邊長相等。
    4、畫圓柱、圓錐的三視圖:
    5、探究:畫出底面是正方形,側(cè)面是全等的三角形的棱錐的三視圖。
    (三)鞏固練習(xí)
    課本p15練習(xí)1、2;p20習(xí)題1.2[a組]2。
    (四)歸納整理
    請學(xué)生回顧發(fā)表如何作好空間幾何體的三視圖
    (五)布置作業(yè)
    課本p20習(xí)題1.2[a組]1。
    高中高一數(shù)學(xué)教案篇十五
    3.能利用上述知識進(jìn)行相關(guān)的論證、計(jì)算、作雙曲線的草圖以及解決簡單的實(shí)際問題。
    一、預(yù)習(xí)檢查。
    1、焦點(diǎn)在x軸上,虛軸長為12,離心率為的雙曲線的標(biāo)準(zhǔn)方程為.
    2、頂點(diǎn)間的距離為6,漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程為.
    3、雙曲線的漸進(jìn)線方程為.
    4、設(shè)分別是雙曲線的半焦距和離心率,則雙曲線的一個(gè)頂點(diǎn)到它的一條漸近線的距離是.
    二、問題探究。
    探究1、類比橢圓的幾何性質(zhì)寫出雙曲線的幾何性質(zhì),畫出草圖并,說出它們的不同.
    探究2、雙曲線與其漸近線具有怎樣的關(guān)系.
    練習(xí):已知雙曲線經(jīng)過,且與另一雙曲線,有共同的漸近線,則此雙曲線的標(biāo)準(zhǔn)方程是.
    例1根據(jù)以下條件,分別求出雙曲線的標(biāo)準(zhǔn)方程.
    (1)過點(diǎn),離心率.
    (2)、是雙曲線的左、右焦點(diǎn),是雙曲線上一點(diǎn),且,,離心率為.
    例2已知雙曲線,直線過點(diǎn),左焦點(diǎn)到直線的距離等于該雙曲線的虛軸長的,求雙曲線的離心率.
    例3(理)求離心率為,且過點(diǎn)的雙曲線標(biāo)準(zhǔn)方程.
    三、思維訓(xùn)練。
    1、已知雙曲線方程為,經(jīng)過它的右焦點(diǎn),作一條直線,使直線與雙曲線恰好有一個(gè)交點(diǎn),則設(shè)直線的斜率是.
    2、橢圓的離心率為,則雙曲線的離心率為.
    3、雙曲線的漸進(jìn)線方程是,則雙曲線的離心率等于=.
    4、(理)設(shè)是雙曲線上一點(diǎn),雙曲線的一條漸近線方程為、分別是雙曲線的左、右焦點(diǎn),若,則.
    四、知識鞏固。
    1、已知雙曲線方程為,過一點(diǎn)(0,1),作一直線,使與雙曲線無交點(diǎn),則直線的斜率的集合是.
    2、設(shè)雙曲線的一條準(zhǔn)線與兩條漸近線交于兩點(diǎn),相應(yīng)的焦點(diǎn)為,若以為直徑的圓恰好過點(diǎn),則離心率為.
    3、已知雙曲線的左,右焦點(diǎn)分別為,點(diǎn)在雙曲線的右支上,且,則雙曲線的離心率的值為.
    4、設(shè)雙曲線的半焦距為,直線過、兩點(diǎn),且原點(diǎn)到直線的距離為,求雙曲線的離心率.
    5、(理)雙曲線的焦距為,直線過點(diǎn)和,且點(diǎn)(1,0)到直線的距離與點(diǎn)(-1,0)到直線的距離之和.求雙曲線的離心率的取值范圍.
    高中高一數(shù)學(xué)教案篇十六
    2、掌握標(biāo)準(zhǔn)方程中的幾何意義。
    3、能利用上述知識進(jìn)行相關(guān)的論證、計(jì)算、作雙曲線的草圖以及解決簡單的實(shí)際問題。
    1、焦點(diǎn)在x軸上,虛軸長為12,離心率為的雙曲線的標(biāo)準(zhǔn)方程為、
    2、頂點(diǎn)間的距離為6,漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程為、
    3、雙曲線的漸進(jìn)線方程為、
    4、設(shè)分別是雙曲線的半焦距和離心率,則雙曲線的一個(gè)頂點(diǎn)到它的一條漸近線的距離是、
    探究1、類比橢圓的幾何性質(zhì)寫出雙曲線的幾何性質(zhì),畫出草圖并,說出它們的不同、
    探究2、雙曲線與其漸近線具有怎樣的關(guān)系、
    練習(xí):已知雙曲線經(jīng)過,且與另一雙曲線,有共同的漸近線,則此雙曲線的標(biāo)準(zhǔn)方程是、
    例1根據(jù)以下條件,分別求出雙曲線的標(biāo)準(zhǔn)方程、
    (1)過點(diǎn),離心率、
    (2)、是雙曲線的左、右焦點(diǎn),是雙曲線上一點(diǎn),且,,離心率為、
    例3(理)求離心率為,且過點(diǎn)的雙曲線標(biāo)準(zhǔn)方程、
    2、橢圓的離心率為,則雙曲線的離心率為、
    3、雙曲線的漸進(jìn)線方程是,則雙曲線的離心率等于=、
    4、設(shè)雙曲線的半焦距為,直線過、兩點(diǎn),且原點(diǎn)到直線的距離為,求雙曲線的離心率、
    將本文的word文檔下載到電腦,方便收藏和打印。