三角函數(shù)誘導(dǎo)公式推理過程

字號:


    數(shù)學(xué)三角函數(shù)誘導(dǎo)公式推理過程是什么呢?感興趣的小伙伴快來和小編一起看看吧。下面是由出國留學(xué)網(wǎng)小編為大家整理的“三角函數(shù)誘導(dǎo)公式推理過程”,僅供參考,歡迎大家閱讀。
    三角函數(shù)誘導(dǎo)公式推理過程
    定名法則
    90°的奇數(shù)倍+α的三角函數(shù),其絕對值與α三角函數(shù)的絕對值互為余函數(shù)。90°的偶數(shù)倍+α的三角函數(shù)與α的三角函數(shù)絕對值相同。也就是“奇余偶同,奇變偶不變”。
    定號法則
    將α看做銳角(注意是“看做”),按所得的角的象限,取三角函數(shù)的符號。也就是“象限定號,符號看象限”。(或為“奇變偶不變,符號看象限”)。
    在Kπ/2中如果K為偶數(shù)時函數(shù)名不變,若為奇數(shù)時函數(shù)名變?yōu)橄喾吹暮瘮?shù)名。正負號看原函數(shù)中α所在象限的正負號。關(guān)于正負號有可口訣;一全正二正弦,三正切四余弦,即第一象限全部為正,第二象限角正弦為正,第三為正切、余切為正,第四象限余弦為正。)還可簡記為:sin上cos右tan對角,即sin的正值都在x軸上方,cos的正值都在y軸右方,tan的正值斜著。
    比如:90°+α。定名:90°是90°的奇數(shù)倍,所以應(yīng)取余函數(shù);定號:將α看做銳角,那么90°+α是第二象限角,第二象限角的正弦為正,余弦為負。所以sin(90°+α)=cosα , cos(90°+α)=-sinα 這個非常神奇,屢試不爽~
    還有一個口訣“縱變橫不變,符號看象限”,例如:sin(90°+α),90°的終邊在縱軸上,所以函數(shù)名變?yōu)橄喾吹暮瘮?shù)名,即cos,將α看做銳角,那么90°+α是第二象限角,第二象限角的正弦為正,所以sin(90°+α)=cosα。
    拓展閱讀:如何正確記憶數(shù)學(xué)公式
    1.函數(shù)思想
    把某一數(shù)學(xué)問題用函數(shù)表示出來,并且利用函數(shù)探究這個問題的一般規(guī)律。這是最基本、最常用的數(shù)學(xué)方法。
    2.數(shù)形結(jié)合思想
    把代數(shù)和幾何相結(jié)合,例如對幾何問題用代數(shù)方法解答,對代數(shù)問題用幾何方法解答,這種方法在解析幾何里最常用。例如求根號((a-1)^2+(b-1)^2)+根號(a^2+(b-1)^2)+根號((a-1)^2+b^2)+根號(a^2+b^2)的最小值,就可以把它放在坐標系中,把它轉(zhuǎn)化成一個點到(0,1)、(1,0)、(0,0)、(1,1)四點的距離,就可以求出它的最小值。
    3.分類討論思想
    當(dāng)一個問題因為某種量的情況不同而有可能引起問題的結(jié)果不同時,需要對這個量的各種情況進行分類討論。比如解不等式|a-1|>4的時候,就要討論a的取值情況。
    4.方程思想
    當(dāng)一個問題可能與某個方程建立關(guān)聯(lián)時,可以構(gòu)造方程并對方程的性質(zhì)進行研究以解決這個問題。例如證明柯西不等式的時候,就可以把柯西不等式轉(zhuǎn)化成一個二次方程的判別式。
    另外,還有歸納類比思想、轉(zhuǎn)化歸納思想、概率統(tǒng)計思想等數(shù)學(xué)思想,例如利用歸納類比思想可以對某種相類似的問題進行研究而得出他們的共同點,從而得出解決這些問題的一般方法。轉(zhuǎn)化歸納思想是把一個較復(fù)雜問題轉(zhuǎn)化為另一個較簡單的問題并且對其方法進行歸納。概率統(tǒng)計思想是指通過概率統(tǒng)計解決一些實際問題,如摸獎的中獎率、某次考試的綜合分析等等。另外,還可以用概率方法解決一些面積問題。
    5.連鎖記憶法
    就是對將要進行記憶的詞語,進行一一串接,由一個詞語想到另一個詞語,這種記憶的關(guān)鍵在于串接的鏈條的結(jié)實程度,例如,我們來記憶書桌,籃球,高樓三組詞語,首先,書桌和籃球鏈接,書桌下的籃球慢慢變大,把書桌頂?shù)椒宽?,然后籃球和高樓,大大的籃球樣的球從高空落下,把高樓砸的粉碎。