2023年二元一次方程組教學反思(3篇)

字號:

    每個人都曾試圖在平淡的學習、工作和生活中寫一篇文章。寫作是培養(yǎng)人的觀察、聯(lián)想、想象、思維和記憶的重要手段。相信許多人會覺得范文很難寫?這里我整理了一些優(yōu)秀的范文,希望對大家有所幫助,下面我們就來了解一下吧。
    二元一次方程組教學反思篇一
    知識與技能
    (1)初步理解二元一次方程和一次函數(shù)的關(guān)系;
    (2)掌握二元一次方程組和對應的兩條直線之間的關(guān)系;
    (3)掌握二元一次方程組的圖像解法。
    (1)教材以“問題串”的形式,揭示方程與函數(shù)間的相互轉(zhuǎn)化,使學生在自主探索中學會不同數(shù)學知識間可以互相轉(zhuǎn)化的數(shù)學思想和方法;
    (2)通過“做一做”引入例1,進一步發(fā)展學生數(shù)形結(jié)合的意識和能力。
    (1)在探究二元一次方程和一次函數(shù)的對應關(guān)系中,在體會近似解與準確解中,培養(yǎng)學生勤于思考、精益求精的精神。
    (2)在經(jīng)歷同一數(shù)學知識可用不同的數(shù)學方法解決的過程中,培養(yǎng)學生的創(chuàng)新意識和變式能力。
    (1)二元一次方程和一次函數(shù)的關(guān)系;
    (2)二元一次方程組和對應的兩條直線的關(guān)系。
    數(shù)形結(jié)合和數(shù)學轉(zhuǎn)化的思想意識。
    教具:多媒體課件、三角板。
    學具:鉛筆、直尺、練習本、坐標紙。
    第一環(huán)節(jié):設(shè)置問題情境,啟發(fā)引導(5分鐘,學生回答問題回顧知識)
    內(nèi)容:
    1、方程x+y=5的解有多少個?是這個方程的解嗎?
    2、點(0,5),(5,0),(2,3)在一次函數(shù)y=的圖像上嗎?
    3、在一次函數(shù)y=的圖像上任取一點,它的坐標適合方程x+y=5嗎?
    4、以方程x+y=5的解為坐標的所有點組成的圖像與一次函數(shù)y=的圖像相同嗎?
    由此得到本節(jié)課的第一個知識點:
    (1)以二元一次方程的解為坐標的點都在相應的函數(shù)圖像上;
    (2)一次函數(shù)圖像上的點的坐標都適合相應的二元一次方程。
    第二環(huán)節(jié)自主探索方程組的解與圖像之間的關(guān)系(10分鐘,教師引導學生解決)
    內(nèi)容:
    1、解方程組
    2、上述方程移項變形轉(zhuǎn)化為兩個一次函數(shù)y=和y=2x,在同一直角坐標系內(nèi)分別作出這兩個函數(shù)的圖像。
    3、方程組的解和這兩個函數(shù)的圖像的交點坐標有什么關(guān)系?由此得到本節(jié)課的第2個知識點:二元一次方程和相應的兩條直線的關(guān)系以及二元一次方程組的圖像解法;
    (1)求二元一次方程組的解可以轉(zhuǎn)化為求兩條直線的交點的橫縱坐標;
    (2)求兩條直線的交點坐標可以轉(zhuǎn)化為求這兩條直線對應的函數(shù)表達式聯(lián)立的二元一次方程組的解。
    (3)解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種。
    注意:利用圖像法求二元一次方程組的解是近似解,要得到準確解,一般還是用代入消元法和加減消元法解方程組。
    第三環(huán)節(jié)典型例題(10分鐘,學生獨立解決)
    探究方程與函數(shù)的相互轉(zhuǎn)化
    內(nèi)容:例1用作圖像的方法解方程組
    例2如圖,直線與的交點坐標是。
    第四環(huán)節(jié)反饋練習(10分鐘,學生解決全班交流)
    內(nèi)容:
    1、已知一次函數(shù)與的圖像的交點為,則。
    2、已知一次函數(shù)與的圖像都經(jīng)過點a(—2,0),且與軸分別交于b,c兩點,則的面積為()
    (a)4(b)5(c)6(d)7
    3、求兩條直線與和軸所圍成的三角形面積。
    4、如圖,兩條直線與的交點坐標可以看作哪個方程組的解?
    第五環(huán)節(jié)課堂小結(jié)(5分鐘,師生共同總結(jié))
    內(nèi)容:以“問題串”的形式,要求學生自主總結(jié)有關(guān)知識、方法:
    1、二元一次方程和一次函數(shù)的圖像的關(guān)系;
    (1)以二元一次方程的解為坐標的點都在相應的函數(shù)圖像上;
    (2)一次函數(shù)圖像上的點的坐標都適合相應的二元一次方程。
    2、方程組和對應的兩條直線的關(guān)系:
    (1)方程組的解是對應的兩條直線的交點坐標;
    (2)兩條直線的交點坐標是對應的方程組的解;
    3、解二元一次方程組的方法有3種:
    (1)代入消元法;
    (2)加減消元法;
    (3)圖像法,要強調(diào)的是由于作圖的不準確性,由圖像法求得的解是近似解。
    第六環(huán)節(jié)作業(yè)布置
    習題7.7a組(優(yōu)等生)1、2、3b組(中等生)1、2c組1、2
    附:板書設(shè)計
    六、教學反思
    二元一次方程組教學反思篇二
    通過學生積極思考,互相討論,經(jīng)歷探索事物之間的數(shù)量關(guān)系,形成方程模型,解方程和運用方程解決實際問題的過程進一步體會方程是刻劃現(xiàn)實世界的有效數(shù)學模型
    讓學生實踐與探索,運用二元一次方程解決有關(guān)配套與設(shè)計的應用題
    尋找等量關(guān)系
    看一看:課本99頁探究2
    問題:1“甲、乙兩種作物的單位面積產(chǎn)量比是1:1、5”是什么意思?
    2、“甲、乙兩種作物的總產(chǎn)量比為3:4”是什么意思?
    3、本題中有哪些等量關(guān)系?
    提示:若甲種作物單位產(chǎn)量是a,那么乙種作物單位產(chǎn)量是多少?
    思考:這塊地還可以怎樣分?
    練一練
    一、某農(nóng)場300名職工耕種51公頃土地,計劃種植水稻、棉花、和蔬菜,已知種植植物每公頃所需的勞動力人數(shù)及投入的設(shè)備獎金如下表:
    農(nóng)作物品種每公頃需勞動力每公頃需投入獎金
    水稻4人1萬元
    棉花8人1萬元
    蔬菜5人2萬元
    已知該農(nóng)場計劃在設(shè)備投入67萬元,應該怎樣安排這三種作物的種植面積,才能使所有職工都有工作,而且投入的資金正好夠用?
    問題:題中有幾個已知量?題中求什么?分別安排多少公頃種水稻、棉花、和蔬菜?
    教材106頁:探究3:如圖,長青化工廠與a、b兩地有公路、鐵路相連,這家工廠從a地購買一批每噸1000元的原料運回工廠,制成每噸8000元的產(chǎn)品運到b地。公路運價為1、5元/(噸?千米),鐵路運價為1、2元/(噸?千米),這兩次運輸共支出公路運費15000元,鐵路運費97200元。這批產(chǎn)品的銷售款比原料費與運輸費的和多多少元?
    二元一次方程組教學反思篇三
    1、進一步經(jīng)歷用方程組解決實際問題的過程,體會方程組是刻畫現(xiàn)實世界的有效數(shù)學模型;
    2、會用列表的方式分析問題中所蘊涵的數(shù)量關(guān)系,列出二元一次方程組;
    3、培養(yǎng)分析問題、解決問題的能力,進一步體會二元一次方程組的應用價值。
    借助列表分問題中所蘊含的數(shù)量關(guān)系。
    用列表的方式分析題目中的各個量的關(guān)系。
    (師生活動)設(shè)計理念
    創(chuàng)設(shè)情境最近幾年,全國各地普遍出現(xiàn)了夏季用電緊張的局面,為疏導電價矛盾,促進居民節(jié)約用電、合理用電,各地出臺了峰谷電價試點方案。
    電力行業(yè)中峰谷的含義是用山峰和山谷來形象地比喻用電負荷特性的變化幅度一般白天的用電比較集中、用電功率比較大,而夜里人們休息時用電比較小,所以通常白天的用電稱為是高峰用電,即8:00~22:00,深夜的用電是低谷用電即22:00~次日8:00.若某地的高峰電價為每千瓦時0.56元;低谷電價為每千瓦時。28元八月份小彬家的總用電量為125千瓦時,總電費為49元,你知道他家高峰用電量和低谷用電量各是多少千瓦時嗎?
    學生獨立思考,容易解答,以一道生活熱點問題引入,具有現(xiàn)實意義,激發(fā)學生學習興趣,同時培養(yǎng)學生節(jié)約、合理用電的意識。
    理解題意是關(guān)健,通過該題,旨在培養(yǎng)學生的讀題能力和收集信息能力。
    解決問題(出示例題)如圖,長青化工廠與a,b兩地有公路、鐵路相連,這家工廠從a地購買一批每噸1000元的原料運回工廠,制成每噸8000元的產(chǎn)品運到b地,公路運價為1.5元(噸·千米),鐵路運價為1.2元(噸·千米),這兩次運輸共支出公路運費15000元,鐵路運費97200元,這批產(chǎn)品的銷售款比原料費與運輸費的和多多少元?
    (圖見教材115頁,圖8.3-2)
    學生自主探索、合作交流。
    設(shè)問1.如何設(shè)未知數(shù)?
    銷售款與產(chǎn)品數(shù)量有關(guān),原料費與原料數(shù)量有關(guān),而公路運費和鐵路運費與產(chǎn)品數(shù)量和原料數(shù)量都有關(guān),因此設(shè)產(chǎn)品重x噸,原料重y噸。
    設(shè)問2.如何確定題中數(shù)量關(guān)系?
    列表分析
    產(chǎn)品x噸
    原料y噸
    合計
    公路運費(元)
    鐵路運費(元)
    價值(元)
    由上表可列方程組
    解這個方程組,得
    因為毛利潤-銷售款-原料費-運輸費
    所以這批產(chǎn)品的銷售款比原料費與運輸?shù)暮投?887800元。
    引導學生討論以上列方程組解決實際問題的
    學生討論、分析:合理設(shè)定未知數(shù),找出相等關(guān)系。本例所涉及的數(shù)據(jù)較多,數(shù)量關(guān)系較為復雜,具有一定挑戰(zhàn)性,能激發(fā)學生探索的熱情。
    通過討論讓學生認識到合理設(shè)定未知數(shù)的愈義。
    借助表格輔助分析題中較復雜的數(shù)量關(guān)系,不失為一種好方法。
    課堂練習
    反饋調(diào)控某瓜果基地生產(chǎn)一種特色水果,若在市場上每噸利潤為1000元;經(jīng)粗加工后銷售,每噸利潤增為4500元;經(jīng)精加工后銷售,每噸利潤可達7500元。一食品公司
    購到這種水果140噸,準備加工后上市銷售,該公司的加工能力是:每天可以精加工6噸或者粗加工16噸,但兩種加工方式不能同時進行,受季節(jié)等條件限制,公司必須將這批水果全部銷售或加工完畢,為此公司研制二種可行的方案:
    方案一:將這批水果全部進行粗加工;
    方案二:盡可能多對水果進行精加工,沒來得及加工的水果在市場上銷售;
    方案三:將部分水果進行精加工,其余進行粗加工,并恰好15天完成。
    你認為選擇哪種方案獲利最多?為什么?
    學生合作討論完成
    選擇經(jīng)濟領(lǐng)城問題讓學生展開討論,增強市場經(jīng)濟意識和決策能力,同時鞏固二元一次方程組的應用。
    小結(jié)與作業(yè)
    小結(jié)提高
    1、在用一元一次方程組解決實際問題時,你會怎樣設(shè)定未知數(shù),可借助哪些方式輔助分析問題中的相等關(guān)系?
    2、小組討論,試用框圖概括“用一元一次方程組分析和解決實際問題”的基本過程。
    學生思考、討論、整理。
    這是第一次比較完整地用框圖反映實際問題與二元一次方程組的關(guān)系。
    讓學生結(jié)合自己的解題過
    程概括整理,幫助理解,培養(yǎng)模
    型化的思想和應用數(shù)學于現(xiàn)實
    生活的意識。
    布置作業(yè)16、必做題:教科書116頁習題8.3第2、6題。
    17、選做題:教科書117頁習題8.3第9題。
    18、備19、選題:
    (1)一批蔬菜要運往某批發(fā)市場,菜農(nóng)準備租用汽車公司的甲、乙兩種貨車,已知過去兩次租用這兩種貨車的記錄如下表所示。
    甲種貨車(輛)乙種貨車(輛)總量(噸)
    第1次
    4528.5
    第2次
    3627
    這批蔬菜需租用5輛甲種貨車、2輛乙種貨車剛好一次運完,如果每噸付20元運費,問:菜農(nóng)應付運費多少元?
    (2)某學校現(xiàn)有學生數(shù)1290人,與去年相比,男生增加20%,女生減少10%,學生總數(shù)增加7.5%,問現(xiàn)在學校中男、女生各是多少?
    本課教育評注(課堂設(shè)計理念,實際教學效果及改進設(shè)想)
    本課探究的問題信息量大,數(shù)量關(guān)系復雜,未知數(shù)不容易設(shè)定,對學生來說是一種挑戰(zhàn),因此安排學生合作學習,學生先獨立思考,自主探索,然后在小組討論中合理設(shè)定未知數(shù),借助表格分析題中的數(shù)量關(guān)系,列出方程組求得問題的解,在本節(jié)的小結(jié)中,讓學生結(jié)合自己的解題過程概括整理實際問題與二元一次方程組的關(guān)系,并比較完整地用框圖反映,培養(yǎng)模型化的思想。
    同時本節(jié)向?qū)W生提供了社會熱點問題、經(jīng)濟問題等現(xiàn)實、具有挑戰(zhàn)性的、富有數(shù)學意義的學習素材,讓學生展開數(shù)學探究,合作交流,樹立數(shù)學服務(wù)于生活、應用于生活的意識。