-
(一)多因素方差分析基本思想
多因素方差分析用來(lái)研究?jī)蓚€(gè)及兩個(gè)以上控制變量是否對(duì)觀測(cè)變量產(chǎn)生顯著影響。這里,由于研究多個(gè)因素對(duì)觀測(cè)變量的影響,因此稱(chēng)為多因素方差分析。多因素方差分析不僅能夠分析多個(gè)因素對(duì)觀測(cè)變量的獨(dú)立影響,更能夠分析多個(gè)控制因素的交互作用能否對(duì)觀測(cè)變量的分布產(chǎn)生顯著影響,進(jìn)而最終找到利于觀測(cè)變量的組合。
例如:
分析不同品種、不同施肥量對(duì)農(nóng)作物產(chǎn)量的影響時(shí),可將農(nóng)作物產(chǎn)量作為觀測(cè)變量,品種和施肥量作為控制變量。利用多因素方差分析方法,研究不同品種、不同施肥量是如何影響農(nóng)作物產(chǎn)量的,并進(jìn)一步研究哪種品種與哪種水平的施肥量是提高農(nóng)作物產(chǎn)量的組合。
(二)多因素方差分析的其他功能
1、均值檢驗(yàn)
在SPSS中,利用多因素方差分析功能還能夠?qū)Ω骺刂谱兞坎煌较掠^測(cè)變量的均值是否存在顯著差異進(jìn)行比較,實(shí)現(xiàn)方式有兩種,即多重比較檢驗(yàn)和對(duì)比檢驗(yàn)。多重比較檢驗(yàn)的方法與單因素方差分析類(lèi)似。對(duì)比檢驗(yàn)采用的是單樣本t檢驗(yàn)的方法,它將控制變量不同水平下的觀測(cè)變量值看做來(lái)自不同總體的樣本,并依次檢驗(yàn)這些總體的均值是否與某個(gè)指定的檢驗(yàn)值存在顯著差異。其中,檢驗(yàn)值可以指定為以下幾種:
觀測(cè)變量的均值(Deviation);
第一水平或最后一個(gè)水平上觀測(cè)變量的均值(Simple);
前一水平上觀測(cè)變量的均值(Difference);
后一水平上觀測(cè)變量的均值(Helmert)。
2、控制變量交互作用的圖形分析
控制變量的交互作用可以通過(guò)圖形直觀分析。
(三)多因素方差分析的進(jìn)一步分析
在上述案例中,已經(jīng)對(duì)廣告形式、地區(qū)對(duì)銷(xiāo)售額的影響進(jìn)行了多因素方差分析,建立了飽和模型。由分析可知:廣告形式與地區(qū)的交互作用不顯著,先進(jìn)一步嘗試非飽和模型,并進(jìn)行均值比較分析、交互作用圖形分析。
1、建立非飽和模型
2、均值比較分析
3、控制變量交互作用的圖形分析
(一)多因素方差分析基本思想
多因素方差分析用來(lái)研究?jī)蓚€(gè)及兩個(gè)以上控制變量是否對(duì)觀測(cè)變量產(chǎn)生顯著影響。這里,由于研究多個(gè)因素對(duì)觀測(cè)變量的影響,因此稱(chēng)為多因素方差分析。多因素方差分析不僅能夠分析多個(gè)因素對(duì)觀測(cè)變量的獨(dú)立影響,更能夠分析多個(gè)控制因素的交互作用能否對(duì)觀測(cè)變量的分布產(chǎn)生顯著影響,進(jìn)而最終找到利于觀測(cè)變量的組合。
例如:
分析不同品種、不同施肥量對(duì)農(nóng)作物產(chǎn)量的影響時(shí),可將農(nóng)作物產(chǎn)量作為觀測(cè)變量,品種和施肥量作為控制變量。利用多因素方差分析方法,研究不同品種、不同施肥量是如何影響農(nóng)作物產(chǎn)量的,并進(jìn)一步研究哪種品種與哪種水平的施肥量是提高農(nóng)作物產(chǎn)量的組合。
(二)多因素方差分析的其他功能
1、均值檢驗(yàn)
在SPSS中,利用多因素方差分析功能還能夠?qū)Ω骺刂谱兞坎煌较掠^測(cè)變量的均值是否存在顯著差異進(jìn)行比較,實(shí)現(xiàn)方式有兩種,即多重比較檢驗(yàn)和對(duì)比檢驗(yàn)。多重比較檢驗(yàn)的方法與單因素方差分析類(lèi)似。對(duì)比檢驗(yàn)采用的是單樣本t檢驗(yàn)的方法,它將控制變量不同水平下的觀測(cè)變量值看做來(lái)自不同總體的樣本,并依次檢驗(yàn)這些總體的均值是否與某個(gè)指定的檢驗(yàn)值存在顯著差異。其中,檢驗(yàn)值可以指定為以下幾種:
觀測(cè)變量的均值(Deviation);
第一水平或最后一個(gè)水平上觀測(cè)變量的均值(Simple);
前一水平上觀測(cè)變量的均值(Difference);
后一水平上觀測(cè)變量的均值(Helmert)。
2、控制變量交互作用的圖形分析
控制變量的交互作用可以通過(guò)圖形直觀分析。
(三)多因素方差分析的進(jìn)一步分析
在上述案例中,已經(jīng)對(duì)廣告形式、地區(qū)對(duì)銷(xiāo)售額的影響進(jìn)行了多因素方差分析,建立了飽和模型。由分析可知:廣告形式與地區(qū)的交互作用不顯著,先進(jìn)一步嘗試非飽和模型,并進(jìn)行均值比較分析、交互作用圖形分析。
1、建立非飽和模型
2、均值比較分析
3、控制變量交互作用的圖形分析