一、函數、極限和連續(xù)
(一)函數
1.知識范圍
(1)函數的概念
函數的定義 函數的表示法 分段函數 隱函數
(2)函數的性質
單調性 奇偶性 有界性 周期性
(3)反函數
反函數的定義 反函數的圖像
(4)基本初等函數
冪函數 指數函數 對數函數 三角函數 反三角函數
(5)函數的四則運算與復合運算
(6)初等函數
2.要求
(1)理解函數的概念。會求函數的表達式、定義域及函數值。會求分段函數的定義域、函數值,會作出簡單的分段函數的圖像。
(2)理解函數的單調性、奇偶性、有界性和周期性。
(3)了解函數與其反函數 之間的關系(定義域、值域、圖像),會求單調函數的反函數。
(4)熟練掌握函數的四則運算與復合運算。
(5)掌握基本初等函數的性質及其圖像。
(6)了解初等函數的概念。
(7)會建立簡單實際問題的函數關系式。
(二)極限
1.知識范圍
(1)數列極限的概念
數列 數列極限的定義
(2)數列極限的性質
性 有界性 四則運算法則 夾逼定理單調有界數列極限存在定理
(3)函數極限的概念
函數在一點處極限的定義 左、右極限及其與極限的關系趨于無窮 時函數的極限 函數極限的幾何意義
(4)函數極限的性質
性 四則運算法則 夾通定理
(5)無窮小量與無窮大量
無窮小量與無窮大量的定義 無窮小量與無窮大量的關系無窮小量的性質 無窮小量的階
(6)兩個重要極限
2.要求
(1)理解極限的概念(對極限定義中“ ”、“ ”、“ ”等形式的描述不作要求)。會求函數在一點處的左極限與右極限,了解函數在一點處極限存在的充分必要條件。
(2)了解極限的有關性質,掌握極限的四則運算法則。
(3)理解無窮小量、無窮大量的概念,掌握無窮小量的性質、無窮小量與無窮大量的關系。會進行無窮小量階的比較(高階、低階、同階和等價)。會運用等價無窮小量代換求極限。
(4)熟練掌握用兩個重要極限求極限的方法。
(一)函數
1.知識范圍
(1)函數的概念
函數的定義 函數的表示法 分段函數 隱函數
(2)函數的性質
單調性 奇偶性 有界性 周期性
(3)反函數
反函數的定義 反函數的圖像
(4)基本初等函數
冪函數 指數函數 對數函數 三角函數 反三角函數
(5)函數的四則運算與復合運算
(6)初等函數
2.要求
(1)理解函數的概念。會求函數的表達式、定義域及函數值。會求分段函數的定義域、函數值,會作出簡單的分段函數的圖像。
(2)理解函數的單調性、奇偶性、有界性和周期性。
(3)了解函數與其反函數 之間的關系(定義域、值域、圖像),會求單調函數的反函數。
(4)熟練掌握函數的四則運算與復合運算。
(5)掌握基本初等函數的性質及其圖像。
(6)了解初等函數的概念。
(7)會建立簡單實際問題的函數關系式。
(二)極限
1.知識范圍
(1)數列極限的概念
數列 數列極限的定義
(2)數列極限的性質
性 有界性 四則運算法則 夾逼定理單調有界數列極限存在定理
(3)函數極限的概念
函數在一點處極限的定義 左、右極限及其與極限的關系趨于無窮 時函數的極限 函數極限的幾何意義
(4)函數極限的性質
性 四則運算法則 夾通定理
(5)無窮小量與無窮大量
無窮小量與無窮大量的定義 無窮小量與無窮大量的關系無窮小量的性質 無窮小量的階
(6)兩個重要極限
2.要求
(1)理解極限的概念(對極限定義中“ ”、“ ”、“ ”等形式的描述不作要求)。會求函數在一點處的左極限與右極限,了解函數在一點處極限存在的充分必要條件。
(2)了解極限的有關性質,掌握極限的四則運算法則。
(3)理解無窮小量、無窮大量的概念,掌握無窮小量的性質、無窮小量與無窮大量的關系。會進行無窮小量階的比較(高階、低階、同階和等價)。會運用等價無窮小量代換求極限。
(4)熟練掌握用兩個重要極限求極限的方法。