二、基本定義:
二元一次方程的定義:含有兩個未知數(shù),并且未知數(shù)的項的次數(shù)都是1,像這樣的方程叫做二元一次方程。
二元一次方程組的定義:把具有相同未知數(shù)的兩個二元一次方程合在一起,就組成了一個二元一次方程組。
二元一次方程組的解:一般地,使二元一次方程兩邊的值相等的兩個未知數(shù)的值,叫做二元一次方程的解,二元一次方程有無數(shù)個解。
二元一次方程組的解:一般地,二元一次方程組的兩個方程的公共解,叫做二元一次方程組的解。
三、二元一次方程的解法:
代入消元法解二元一次方程組:
基本思路:未知數(shù)又多變少。
消元法的基本方法:將二元一次方程組轉(zhuǎn)化為一元一次方程。
代入消元法:把二元一次方程組中一個方程的未知數(shù)用含另一個未知數(shù)的式子表示出來,再代入另一個方程,實現(xiàn)消元,進而求得這個二元一次方程組的解。這個方法叫做代入消元法,簡稱代入法。
代入法解二元一次方程組的一般步驟:
從方程組中選出一個系數(shù)比較簡單的方程,將這個方程中的一個未知數(shù)(例如y)用含另一個未知數(shù)(例如x)的代數(shù)式表示出來,即寫成y=ax b的形式,即“變”
將y=ax b代入到另一個方程中,消去y,得到一個關(guān)于x的一元一次方程,即“代”。
解出這個一元一次方程,求出x的值,即“解”。
把求得的x值代入y=ax b
二元一次方程的定義:含有兩個未知數(shù),并且未知數(shù)的項的次數(shù)都是1,像這樣的方程叫做二元一次方程。
二元一次方程組的定義:把具有相同未知數(shù)的兩個二元一次方程合在一起,就組成了一個二元一次方程組。
二元一次方程組的解:一般地,使二元一次方程兩邊的值相等的兩個未知數(shù)的值,叫做二元一次方程的解,二元一次方程有無數(shù)個解。
二元一次方程組的解:一般地,二元一次方程組的兩個方程的公共解,叫做二元一次方程組的解。
三、二元一次方程的解法:
代入消元法解二元一次方程組:
基本思路:未知數(shù)又多變少。
消元法的基本方法:將二元一次方程組轉(zhuǎn)化為一元一次方程。
代入消元法:把二元一次方程組中一個方程的未知數(shù)用含另一個未知數(shù)的式子表示出來,再代入另一個方程,實現(xiàn)消元,進而求得這個二元一次方程組的解。這個方法叫做代入消元法,簡稱代入法。
代入法解二元一次方程組的一般步驟:
從方程組中選出一個系數(shù)比較簡單的方程,將這個方程中的一個未知數(shù)(例如y)用含另一個未知數(shù)(例如x)的代數(shù)式表示出來,即寫成y=ax b的形式,即“變”
將y=ax b代入到另一個方程中,消去y,得到一個關(guān)于x的一元一次方程,即“代”。
解出這個一元一次方程,求出x的值,即“解”。
把求得的x值代入y=ax b