世界一流潛能大師博恩•崔西說:“潛意識的力量比表意識大三萬倍”。追逐高考,我們向往成功,我們希望激發(fā)潛能,我們就需要在心中鑄造一座高高矗立的、堅固無比的燈塔,它的名字叫信念。高二頻道為你整理了《高二數(shù)學《導數(shù)》知識點總結》,助你一路向前!
【一】
1、導數(shù)的定義:在點處的導數(shù)記作.
2.導數(shù)的幾何物理意義:曲線在點處切線的斜率
①k=f/(x0)表示過曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t)表示即時速度。a=v/(t)表示加速度。
3.常見函數(shù)的導數(shù)公式:①;②;③;
⑤;⑥;⑦;⑧。
4.導數(shù)的四則運算法則:
5.導數(shù)的應用:
(1)利用導數(shù)判斷函數(shù)的單調(diào)性:設函數(shù)在某個區(qū)間內(nèi)可導,如果,那么為增函數(shù);如果,那么為減函數(shù);
注意:如果已知為減函數(shù)求字母取值范圍,那么不等式恒成立。
(2)求極值的步驟:
①求導數(shù);
②求方程的根;
③列表:檢驗在方程根的左右的符號,如果左正右負,那么函數(shù)在這個根處取得極大值;如果左負右正,那么函數(shù)在這個根處取得極小值;
(3)求可導函數(shù)值與最小值的步驟:
ⅰ求的根;ⅱ把根與區(qū)間端點函數(shù)值比較,的為值,最小的是最小值。
導數(shù)與物理,幾何,代數(shù)關系密切:在幾何中可求切線;在代數(shù)中可求瞬時變化率;在物理中可求速度、加速度。學好導數(shù)至關重要,一起來學習高二數(shù)學導數(shù)的定義知識點歸納吧!
導數(shù)是微積分中的重要基礎概念。當函數(shù)y=f(x)的自變量x在一點x0上產(chǎn)生一個增量Δx時,函數(shù)輸出值的增量Δy與自變量增量Δx的比值在Δx趨于0時的極限a如果存在,a即為在x0處的導數(shù),記作f'(x0)或df(x0)/dx。
導數(shù)是函數(shù)的局部性質。一個函數(shù)在某一點的導數(shù)描述了這個函數(shù)在這一點附近的變化率。如果函數(shù)的自變量和取值都是實數(shù)的話,函數(shù)在某一點的導數(shù)就是該函數(shù)所代表的曲線在這一點上的切線斜率。導數(shù)的本質是通過極限的概念對函數(shù)進行局部的線性逼近。例如在運動學中,物體的位移對于時間的導數(shù)就是物體的瞬時速度。
不是所有的函數(shù)都有導數(shù),一個函數(shù)也不一定在所有的點上都有導數(shù)。若某函數(shù)在某一點導數(shù)存在,則稱其在這一點可導,否則稱為不可導。然而,可導的函數(shù)一定連續(xù);不連續(xù)的函數(shù)一定不可導。
對于可導的函數(shù)f(x),x↦f'(x)也是一個函數(shù),稱作f(x)的導函數(shù)。尋找已知的函數(shù)在某點的導數(shù)或其導函數(shù)的過程稱為求導。實質上,求導就是一個求極限的過程,導數(shù)的四則運算法則也來源于極限的四則運算法則。反之,已知導函數(shù)也可以倒過來求原來的函數(shù),即不定積分。微積分基本定理說明了求原函數(shù)與積分是等價的。求導和積分是一對互逆的操作,它們都是微積分學中最為基礎的概念。
設函數(shù)y=f(x)在點x0的某個鄰域內(nèi)有定義,當自變量x在x0處有增量Δx,(x0+Δx)也在該鄰域內(nèi)時,相應地函數(shù)取得增量Δy=f(x0+Δx)-f(x0);如果Δy與Δx之比當Δx→0時極限存在,則稱函數(shù)y=f(x)在點x0處可導,并稱這個極限為函數(shù)y=f(x)在點x0處的導數(shù)記為f'(x0),也記作y'│x=x0或dy/dx│x=x0
【二】
一、求導數(shù)的方法
(1)基本求導公式
(2)導數(shù)的四則運算
(3)復合函數(shù)的導數(shù)
設在點x處可導,y=在點處可導,則復合函數(shù)在點x處可導,且即
二、關于極限
.1.數(shù)列的極限:
粗略地說,就是當數(shù)列的項n無限增大時,數(shù)列的項無限趨向于A,這就是數(shù)列極限的描述性定義。記作:=A。如:
2函數(shù)的極限:
當自變量x無限趨近于常數(shù)時,如果函數(shù)無限趨近于一個常數(shù),就說當x趨近于時,函數(shù)的極限是,記作
三、導數(shù)的概念
1、在處的導數(shù).
2、在的導數(shù).
3.函數(shù)在點處的導數(shù)的幾何意義:
函數(shù)在點處的導數(shù)是曲線在處的切線的斜率,
即k=,相應的切線方程是
注:函數(shù)的導函數(shù)在時的函數(shù)值,就是在處的導數(shù)。
例、若=2,則=()A-1B-2C1D
四、導數(shù)的綜合運用
(一)曲線的切線
函數(shù)y=f(x)在點處的導數(shù),就是曲線y=(x)在點處的切線的斜率.由此,可以利用導數(shù)求曲線的切線方程.具體求法分兩步:
(1)求出函數(shù)y=f(x)在點處的導數(shù),即曲線y=f(x)在點處的切線的斜率k=;
(2)在已知切點坐標和切線斜率的條件下,求得切線方程為_。
高中數(shù)學函數(shù)與導數(shù)知識點總結分享:
函數(shù)與導數(shù)
第一、求函數(shù)定義域題忽視細節(jié)函數(shù)的定義域是使函數(shù)有意義的自變量的取值范圍,考生想要在考場上準確求出定義域,就要根據(jù)函數(shù)解析式把各種情況下的自變量的限制條件找出來,列成不等式組,不等式組的解集就是該函數(shù)的定義域。在求一般函數(shù)定義域時,要注意以下幾點:分母不為0;偶次被開放式非負;真數(shù)大于0以及0的0次冪無意義。函數(shù)的定義域是非空的數(shù)集,在解答函數(shù)定義域類的題時千萬別忘了這一點。復合函數(shù)要注意外層函數(shù)的定義域由內(nèi)層函數(shù)的值域決定。
第二、帶絕對值的函數(shù)單調(diào)性判斷錯誤帶絕對值的函數(shù)實質上就是分段函數(shù),判斷分段函數(shù)的單調(diào)性有兩種方法:第一,在各個段上根據(jù)函數(shù)的解析式所表示的函數(shù)的單調(diào)性求出單調(diào)區(qū)間,然后對各個段上的單調(diào)區(qū)間進行整合;第二,畫出這個分段函數(shù)的圖象,結合函數(shù)圖象、性質能夠進行直觀的判斷。函數(shù)題離不開函數(shù)圖象,而函數(shù)圖象反應了函數(shù)的所有性質,考生在解答函數(shù)題時,要第一時間在腦海中畫出函數(shù)圖象,從圖象上分析問題,解決問題。對于函數(shù)不同的單調(diào)遞增(減)區(qū)間,千萬記住,不要使用并集,指明這幾個區(qū)間是該函數(shù)的單調(diào)遞增(減)區(qū)間即可。
第三、求函數(shù)奇偶性的常見錯誤求函數(shù)奇偶性類的題最常見的錯誤有求錯函數(shù)定義域或忽視函數(shù)定義域,對函數(shù)具有奇偶性的前提條件不清,對分段函數(shù)奇偶性判斷方法不當?shù)鹊?。判斷函?shù)的奇偶性,首先要考慮函數(shù)的定義域,一個函數(shù)具備奇偶性的必要條件是這個函數(shù)的定義域區(qū)間關于原點對稱,如果不具備這個條件,函數(shù)一定是非奇非偶的函數(shù)。在定義域區(qū)間關于原點對稱的前提下,再根據(jù)奇偶函數(shù)的定義進行判斷。在用定義進行判斷時,要注意自變量在定義域區(qū)間內(nèi)的任意性。
第四、抽象函數(shù)推理不嚴謹很多抽象函數(shù)問題都是以抽象出某一類函數(shù)的共同“特征”而設計的,在解答此類問題時,考生可以通過類比這類函數(shù)中一些具體函數(shù)的性質去解決抽象函數(shù)。多用特殊賦值法,通過特殊賦可以找到函數(shù)的不變性質,這往往是問題的突破口。抽象函數(shù)性質的證明屬于代數(shù)推理,和幾何推理證明一樣,考生在作答時要注意推理的嚴謹性。每一步都要有充分的條件,別漏掉條件,更不能臆造條件,推理過程層次分明,還要注意書寫規(guī)范。
第五、函數(shù)零點定理使用不當若函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,且有f(a)f(b)<>
第六、混淆兩類切線曲線上一點處的切線是指以該點為切點的曲線的切線,這樣的切線只有一條;曲線的過一個點的切線是指過這個點的曲線的所有切線,這個點如果在曲線上當然包括曲線在該點處的切線,曲線的過一個點的切線可能不止一條。因此,考生在求解曲線的切線問題時,首先要區(qū)分是什么類型的切線。
第七、混淆導數(shù)與單調(diào)性的關系一個函數(shù)在某個區(qū)間上是增函數(shù)的這類題型,如果考生認為函數(shù)的導函數(shù)在此區(qū)間上恒大于0,很容易就會出錯。解答函數(shù)的單調(diào)性與其導函數(shù)的關系時一定要注意,一個函數(shù)的導函數(shù)在某個區(qū)間上單調(diào)遞增(減)的充要條件是這個函數(shù)的導函數(shù)在此區(qū)間上恒大(小)于等于0,且導函數(shù)在此區(qū)間的任意子區(qū)間上都不恒為零。
第八、導數(shù)與極值關系不清考生在使用導數(shù)求函數(shù)極值類問題時,容易出現(xiàn)的錯誤就是求出使導函數(shù)等于0的點,卻沒有對這些點左右兩側導函數(shù)的符號進行判斷,誤以為使導函數(shù)等于0的點就是函數(shù)的極值點,往往就會出錯,出錯原因就是考生對導數(shù)與極值關系沒搞清楚。可導函數(shù)在一個點處的導函數(shù)值為零只是這個函數(shù)在此點處取到極值的必要條件,小編在此提醒廣大考生,在使用導數(shù)求函數(shù)極值時,一定要對極值點進行仔細檢查。
【一】
1、導數(shù)的定義:在點處的導數(shù)記作.
2.導數(shù)的幾何物理意義:曲線在點處切線的斜率
①k=f/(x0)表示過曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t)表示即時速度。a=v/(t)表示加速度。
3.常見函數(shù)的導數(shù)公式:①;②;③;
⑤;⑥;⑦;⑧。
4.導數(shù)的四則運算法則:
5.導數(shù)的應用:
(1)利用導數(shù)判斷函數(shù)的單調(diào)性:設函數(shù)在某個區(qū)間內(nèi)可導,如果,那么為增函數(shù);如果,那么為減函數(shù);
注意:如果已知為減函數(shù)求字母取值范圍,那么不等式恒成立。
(2)求極值的步驟:
①求導數(shù);
②求方程的根;
③列表:檢驗在方程根的左右的符號,如果左正右負,那么函數(shù)在這個根處取得極大值;如果左負右正,那么函數(shù)在這個根處取得極小值;
(3)求可導函數(shù)值與最小值的步驟:
ⅰ求的根;ⅱ把根與區(qū)間端點函數(shù)值比較,的為值,最小的是最小值。
導數(shù)與物理,幾何,代數(shù)關系密切:在幾何中可求切線;在代數(shù)中可求瞬時變化率;在物理中可求速度、加速度。學好導數(shù)至關重要,一起來學習高二數(shù)學導數(shù)的定義知識點歸納吧!
導數(shù)是微積分中的重要基礎概念。當函數(shù)y=f(x)的自變量x在一點x0上產(chǎn)生一個增量Δx時,函數(shù)輸出值的增量Δy與自變量增量Δx的比值在Δx趨于0時的極限a如果存在,a即為在x0處的導數(shù),記作f'(x0)或df(x0)/dx。
導數(shù)是函數(shù)的局部性質。一個函數(shù)在某一點的導數(shù)描述了這個函數(shù)在這一點附近的變化率。如果函數(shù)的自變量和取值都是實數(shù)的話,函數(shù)在某一點的導數(shù)就是該函數(shù)所代表的曲線在這一點上的切線斜率。導數(shù)的本質是通過極限的概念對函數(shù)進行局部的線性逼近。例如在運動學中,物體的位移對于時間的導數(shù)就是物體的瞬時速度。
不是所有的函數(shù)都有導數(shù),一個函數(shù)也不一定在所有的點上都有導數(shù)。若某函數(shù)在某一點導數(shù)存在,則稱其在這一點可導,否則稱為不可導。然而,可導的函數(shù)一定連續(xù);不連續(xù)的函數(shù)一定不可導。
對于可導的函數(shù)f(x),x↦f'(x)也是一個函數(shù),稱作f(x)的導函數(shù)。尋找已知的函數(shù)在某點的導數(shù)或其導函數(shù)的過程稱為求導。實質上,求導就是一個求極限的過程,導數(shù)的四則運算法則也來源于極限的四則運算法則。反之,已知導函數(shù)也可以倒過來求原來的函數(shù),即不定積分。微積分基本定理說明了求原函數(shù)與積分是等價的。求導和積分是一對互逆的操作,它們都是微積分學中最為基礎的概念。
設函數(shù)y=f(x)在點x0的某個鄰域內(nèi)有定義,當自變量x在x0處有增量Δx,(x0+Δx)也在該鄰域內(nèi)時,相應地函數(shù)取得增量Δy=f(x0+Δx)-f(x0);如果Δy與Δx之比當Δx→0時極限存在,則稱函數(shù)y=f(x)在點x0處可導,并稱這個極限為函數(shù)y=f(x)在點x0處的導數(shù)記為f'(x0),也記作y'│x=x0或dy/dx│x=x0
【二】
一、求導數(shù)的方法
(1)基本求導公式
(2)導數(shù)的四則運算
(3)復合函數(shù)的導數(shù)
設在點x處可導,y=在點處可導,則復合函數(shù)在點x處可導,且即
二、關于極限
.1.數(shù)列的極限:
粗略地說,就是當數(shù)列的項n無限增大時,數(shù)列的項無限趨向于A,這就是數(shù)列極限的描述性定義。記作:=A。如:
2函數(shù)的極限:
當自變量x無限趨近于常數(shù)時,如果函數(shù)無限趨近于一個常數(shù),就說當x趨近于時,函數(shù)的極限是,記作
三、導數(shù)的概念
1、在處的導數(shù).
2、在的導數(shù).
3.函數(shù)在點處的導數(shù)的幾何意義:
函數(shù)在點處的導數(shù)是曲線在處的切線的斜率,
即k=,相應的切線方程是
注:函數(shù)的導函數(shù)在時的函數(shù)值,就是在處的導數(shù)。
例、若=2,則=()A-1B-2C1D
四、導數(shù)的綜合運用
(一)曲線的切線
函數(shù)y=f(x)在點處的導數(shù),就是曲線y=(x)在點處的切線的斜率.由此,可以利用導數(shù)求曲線的切線方程.具體求法分兩步:
(1)求出函數(shù)y=f(x)在點處的導數(shù),即曲線y=f(x)在點處的切線的斜率k=;
(2)在已知切點坐標和切線斜率的條件下,求得切線方程為_。
高中數(shù)學函數(shù)與導數(shù)知識點總結分享:
函數(shù)與導數(shù)
第一、求函數(shù)定義域題忽視細節(jié)函數(shù)的定義域是使函數(shù)有意義的自變量的取值范圍,考生想要在考場上準確求出定義域,就要根據(jù)函數(shù)解析式把各種情況下的自變量的限制條件找出來,列成不等式組,不等式組的解集就是該函數(shù)的定義域。在求一般函數(shù)定義域時,要注意以下幾點:分母不為0;偶次被開放式非負;真數(shù)大于0以及0的0次冪無意義。函數(shù)的定義域是非空的數(shù)集,在解答函數(shù)定義域類的題時千萬別忘了這一點。復合函數(shù)要注意外層函數(shù)的定義域由內(nèi)層函數(shù)的值域決定。
第二、帶絕對值的函數(shù)單調(diào)性判斷錯誤帶絕對值的函數(shù)實質上就是分段函數(shù),判斷分段函數(shù)的單調(diào)性有兩種方法:第一,在各個段上根據(jù)函數(shù)的解析式所表示的函數(shù)的單調(diào)性求出單調(diào)區(qū)間,然后對各個段上的單調(diào)區(qū)間進行整合;第二,畫出這個分段函數(shù)的圖象,結合函數(shù)圖象、性質能夠進行直觀的判斷。函數(shù)題離不開函數(shù)圖象,而函數(shù)圖象反應了函數(shù)的所有性質,考生在解答函數(shù)題時,要第一時間在腦海中畫出函數(shù)圖象,從圖象上分析問題,解決問題。對于函數(shù)不同的單調(diào)遞增(減)區(qū)間,千萬記住,不要使用并集,指明這幾個區(qū)間是該函數(shù)的單調(diào)遞增(減)區(qū)間即可。
第三、求函數(shù)奇偶性的常見錯誤求函數(shù)奇偶性類的題最常見的錯誤有求錯函數(shù)定義域或忽視函數(shù)定義域,對函數(shù)具有奇偶性的前提條件不清,對分段函數(shù)奇偶性判斷方法不當?shù)鹊?。判斷函?shù)的奇偶性,首先要考慮函數(shù)的定義域,一個函數(shù)具備奇偶性的必要條件是這個函數(shù)的定義域區(qū)間關于原點對稱,如果不具備這個條件,函數(shù)一定是非奇非偶的函數(shù)。在定義域區(qū)間關于原點對稱的前提下,再根據(jù)奇偶函數(shù)的定義進行判斷。在用定義進行判斷時,要注意自變量在定義域區(qū)間內(nèi)的任意性。
第四、抽象函數(shù)推理不嚴謹很多抽象函數(shù)問題都是以抽象出某一類函數(shù)的共同“特征”而設計的,在解答此類問題時,考生可以通過類比這類函數(shù)中一些具體函數(shù)的性質去解決抽象函數(shù)。多用特殊賦值法,通過特殊賦可以找到函數(shù)的不變性質,這往往是問題的突破口。抽象函數(shù)性質的證明屬于代數(shù)推理,和幾何推理證明一樣,考生在作答時要注意推理的嚴謹性。每一步都要有充分的條件,別漏掉條件,更不能臆造條件,推理過程層次分明,還要注意書寫規(guī)范。
第五、函數(shù)零點定理使用不當若函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,且有f(a)f(b)<>
第六、混淆兩類切線曲線上一點處的切線是指以該點為切點的曲線的切線,這樣的切線只有一條;曲線的過一個點的切線是指過這個點的曲線的所有切線,這個點如果在曲線上當然包括曲線在該點處的切線,曲線的過一個點的切線可能不止一條。因此,考生在求解曲線的切線問題時,首先要區(qū)分是什么類型的切線。
第七、混淆導數(shù)與單調(diào)性的關系一個函數(shù)在某個區(qū)間上是增函數(shù)的這類題型,如果考生認為函數(shù)的導函數(shù)在此區(qū)間上恒大于0,很容易就會出錯。解答函數(shù)的單調(diào)性與其導函數(shù)的關系時一定要注意,一個函數(shù)的導函數(shù)在某個區(qū)間上單調(diào)遞增(減)的充要條件是這個函數(shù)的導函數(shù)在此區(qū)間上恒大(小)于等于0,且導函數(shù)在此區(qū)間的任意子區(qū)間上都不恒為零。
第八、導數(shù)與極值關系不清考生在使用導數(shù)求函數(shù)極值類問題時,容易出現(xiàn)的錯誤就是求出使導函數(shù)等于0的點,卻沒有對這些點左右兩側導函數(shù)的符號進行判斷,誤以為使導函數(shù)等于0的點就是函數(shù)的極值點,往往就會出錯,出錯原因就是考生對導數(shù)與極值關系沒搞清楚。可導函數(shù)在一個點處的導函數(shù)值為零只是這個函數(shù)在此點處取到極值的必要條件,小編在此提醒廣大考生,在使用導數(shù)求函數(shù)極值時,一定要對極值點進行仔細檢查。