高二理科數(shù)學下冊知識點歸納

字號:


    在學習數(shù)學時,我們要不斷的總結(jié)和歸納,這樣才有利于知識的掌握。為各位同學整理了《高二理科數(shù)學下冊知識點歸納》,希望對你的學習有所幫助!
    1.高二理科數(shù)學下冊知識點歸納 篇一
    直線和平面垂直
    直線和平面垂直的定義:如果一條直線a和一個平面內(nèi)的任意一條直線都垂直,我們就說直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。
    直線與平面垂直的判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個平面。
    直線與平面垂直的性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。
    2.高二理科數(shù)學下冊知識點歸納 篇二
    直線方程:
    1.點斜式:y-y0=k(x-x0)
    (x0,y0)是直線所通過的已知點的坐標,k是直線的已知斜率。x是自變量,直線上任意一點的橫坐標;y是因變量,直線上任意一點的縱坐標。
    2.斜截式:y=kx+b
    直線的斜截式方程:y=kx+b,其中k是直線的斜率,b是直線在y軸上的截距。該方程叫做直線的斜截式方程,簡稱斜截式。此斜截式類似于一次函數(shù)的表達式。
    3.兩點式;(y-y1)/(y2-y1)=(x-x1)/(x2-x1)
    如果x1=x2,y1=y2,那么兩點就重合了,相當于只有一個已知點了,這樣不能確定一條直線。
    如果x1=x2,y1y2,那么此直線就是垂直于X軸的一條直線,其方程為x=x1,不能表示成上面的一般式。
    如果x1x2,但y1=y2,那么此直線就是垂直于Y軸的一條直線,其方程為y=y1,也不能表示成上面的一般式。
    4.截距式x/a+y/b=1
    對x的截距就是y=0時,x的值,對y的截距就是x=0時,y的值。x截距為a,y截距b,截距式就是:x/a+y/b=1下面由斜截式方程推導y=kx+b,-kx=b-y令x=0求出y=b,令y=0求出x=-b/k所以截距a=-b/k,b=b帶入得x/a+y/b=x/(-b/k)+y/b=-kx/b+y/b=(b-y)/b+y/b=b/b=1。
    5.一般式;Ax+By+C=0
    將ax+by+c=0變換可得y=-x/b-c/b(b不為零),其中-x/b=k(斜率),c/b=‘b’(截距)。ax+by+c=0在解析幾何中更常用,用方程處理起來比較方便。
    3.高二理科數(shù)學下冊知識點歸納 篇三
    向量公式:
    1.單位向量:單位向量a0=向量a/|向量a|
    2.P(x,y)那么向量OP=x向量i+y向量j|向量OP|=根號(x平方+y平方)
    3.P1(x1,y1)P2(x2,y2)那么向量P1P2={x2-x1,y2-y1}|向量P1P2|=根號[(x2-x1)平方+(y2-y1)平方]
    4.向量a={x1,x2}向量b={x2,y2}向量a_向量b=|向量a|_|向量b|_Cosα=x1x2+y1y2Cosα=向量a_向量b/|向量a|_|向量b|(x1x2+y1y2)根號(x1平方+y1平方)_根號(x2平方+y2平方)
    5.空間向量:同上推論(提示:向量a={x,y,z})
    6.充要條件:如果向量a向量b那么向量a_向量b=0如果向量a//向量b那么向量a_向量b=|向量a|_|向量b|或者x1/x2=y1/y2
    7.|向量a向量b|平方=|向量a|平方+|向量b|平方2向量a_向量b=(向量a向量b)平方
    4.高二理科數(shù)學下冊知識點歸納 篇四
    (1)總體和樣本:
    ①在統(tǒng)計學中,把研究對象的全體叫做總體.
    ②把每個研究對象叫做個體.
    ③把總體中個體的總數(shù)叫做總體容量.
    ④為了研究總體的有關(guān)性質(zhì),一般從總體中隨機抽取一部分:x1,x2,....,_研究,我們稱它為樣本.其中個體的個數(shù)稱為樣本容量.
    (2)簡單隨機抽樣,也叫純隨機抽樣。
    就是從總體中不加任何分組、劃類、排隊等,完全隨機地抽取調(diào)查單位。特點是:每個樣本單位被抽中的可能性相同(概率相等),樣本的每個單位完全獨立,彼此間無一定的關(guān)聯(lián)性和排斥性。簡單隨機抽樣是其它各種抽樣形式的基礎(chǔ)。通常只是在總體單位之間差異程度較小和數(shù)目較少時,才采用這種方法。
    (3)簡單隨機抽樣常用的方法:
    ①抽簽法
    ②隨機數(shù)表法
    ③計算機模擬法
    在簡單隨機抽樣的樣本容量設計中,主要考慮:
    ①總體變異情況;
    ②允許誤差范圍;
    ③概率保證程度。
    (4)抽簽法:
    ①給調(diào)查對象群體中的每一個對象編號;
    ②準備抽簽的工具,實施抽簽;
    ③對樣本中的每一個個體進行測量或調(diào)查
    5.高二理科數(shù)學下冊知識點歸納 篇五
    概率性質(zhì)與公式
    (1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特別地,如果A與B互不相容,則P(A+B)=P(A)+P(B);
    (2)差:P(A-B)=P(A)-P(AB),特別地,如果B包含于A,則P(A-B)=P(A)-P(B);
    (3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特別地,如果A與B相互獨立,則P(AB)=P(A)P(B);
    (4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果。
    貝葉斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai)。它是由果索因;
    如果一個事件B可以在多種情形(原因)A1,A2,....,An下發(fā)生,則用全概率公式求B發(fā)生的概率;如果事件B已經(jīng)發(fā)生,要求它是由Aj引起的概率,則用貝葉斯公式。
    (5)二項概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n。當一個問題可以看成n重貝努力試驗(三個條件:n次重復,每次只有A與A的逆可能發(fā)生,各次試驗結(jié)果相互獨立)時,要考慮二項概率公式。