高三數(shù)學必修二復習知識點

字號:


    其實任何學科的知識都是一樣的,學習任何一門學科,勤奮都是的學習方法,沒有之一,以下是整理的《高三數(shù)學必修二復習知識點》希望能夠幫助到大家。
    1.高三數(shù)學必修二復習知識點 篇一
    1、科學記數(shù)法:把一個數(shù)字寫成的形式的記數(shù)方法。
    2、統(tǒng)計圖:形象地表示收集到的數(shù)據(jù)的圖。
    3、扇形統(tǒng)計圖:用圓和扇形來表示總體和部分的關系,扇形大小反映部分占總體的百分比的大小;在扇形統(tǒng)計圖中,每個部分占總體的百分比等于該部分對應的扇形圓心角與360°的比。
    4、條形統(tǒng)計圖:清楚地表示出每個項目的具體數(shù)目。
    5、折線統(tǒng)計圖:清楚地反映事物的變化情況。
    6、確定事件包括:肯定會發(fā)生的必然事件和一定不會發(fā)生的不可能事件。
    7、不確定事件:可能發(fā)生也可能不發(fā)生的事件;不確定事件發(fā)生的可能性大小不同;不確定。
    8、事件的概率:可用事件結(jié)果除以所以可能結(jié)果求得理論概率。
    9、有效數(shù)字:對于一個近似數(shù),從左邊第一個不是0的數(shù)字起,到精確到的數(shù)位為止的數(shù)字。
    10、游戲雙方公平:雙方獲勝的可能性相同。
    11、算數(shù)平均數(shù):簡稱“平均數(shù)”,最常用,受極端值得影響較大;加權(quán)平均數(shù)12、中位數(shù):數(shù)據(jù)按大小排列,處于中間位置的數(shù),計算簡單,受極端值得影響較小。
    13、眾數(shù):一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),受極端值得影響較小,跟其他數(shù)據(jù)關系不大。
    14、平均數(shù)、眾數(shù)、中位數(shù)都是數(shù)據(jù)的代表,刻畫了一組數(shù)據(jù)的“平均水平”。
    15、普查:為了一定目的對考察對象進行全面調(diào)查;考察對象全體叫總體,每個考察對象叫個體。
    16、抽樣調(diào)查:從總體中抽取部分個體進行調(diào)查;從總體中抽出的一部分個體叫樣本(有代表性)。
    17、隨機調(diào)查:按機會均等的原則進行調(diào)查,總體中每個個體被調(diào)查的概率相同。
    18、頻數(shù):每次對象出現(xiàn)的次數(shù)。
    19、頻率:每次對象出現(xiàn)的次數(shù)與總次數(shù)的比值。
    20、級差:一組數(shù)據(jù)中數(shù)據(jù)與最小數(shù)據(jù)的差,刻畫數(shù)據(jù)的離散程度。
    21、方差:各個數(shù)據(jù)與平均數(shù)之差的平方的平均數(shù),刻畫數(shù)據(jù)的離散程度。
    21、標準方差:方差的算數(shù)平方根刻畫數(shù)據(jù)的離散程度。
    23、一組數(shù)據(jù)的級差、方差、標準方差越小,這組數(shù)據(jù)就越穩(wěn)定。
    24、利用樹狀圖或表格方便求出某事件發(fā)生的概率。
    25、兩個對比圖像中,坐標軸上同一單位長度表示的意義一致,縱坐標從0開始畫。
    2.高三數(shù)學必修二復習知識點 篇二
    平方關系:
    sin^2α+cos^2α=1
    1+tan^2α=sec^2α
    1+cot^2α=csc^2α
    積的關系:
    sinα=tanα×cosα
    cosα=cotα×sinα
    tanα=sinα×secα
    cotα=cosα×cscα
    secα=tanα×cscα
    cscα=secα×cotα
    倒數(shù)關系:
    tanα·cotα=1
    sinα·cscα=1
    cosα·secα=1
    商的關系:
    sinα/cosα=tanα=secα/cscα
    cosα/sinα=cotα=cscα/secα
    3.高三數(shù)學必修二復習知識點 篇三
    空間幾何體的三視圖
    定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)
    俯視圖(從上向下)
    注:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側(cè)視圖反映了物體的高度和寬度.
    空間幾何體的直觀圖——斜二測畫法
    斜二測畫法特點:原來與x軸平行的線段仍然與x平行且長度不變;
    原來與y軸平行的線段仍然與y平行,長度為原來的一半.
    柱體、錐體、臺體的表面積與體積
    (1)幾何體的表面積為幾何體各個面的面積的和.
    (2)特殊幾何體表面積公式(c為底面周長,h為高,為斜高,l為母線)
    (3)柱體、錐體、臺體的體積公式
    4.高三數(shù)學必修二復習知識點 篇四
    數(shù)列
    (1)數(shù)列的概念和簡單表示法
    ①了解數(shù)列的概念和幾種簡單的表示方法(列表、圖象、通項公式).
    ②了解數(shù)列是自變量為正整數(shù)的一類函數(shù).
    (2)等差數(shù)列、等比數(shù)列
    ①理解等差數(shù)列、等比數(shù)列的概念.
    ②掌握等差數(shù)列、等比數(shù)列的通項公式與前項和公式.
    ③能在具體的問題情境中,識別數(shù)列的等差關系或等比關系,并能用有關知識解決相應的問題.
    ④了解等差數(shù)列與一次函數(shù)、等比數(shù)列與指數(shù)函數(shù)的關系.
    5.高三數(shù)學必修二復習知識點 篇五
    直線與方程
    (1)直線的傾斜角
    定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°
    (2)直線的斜率
    ①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即ktan。斜率反映直線與軸的傾斜程度。當0,90時,k0;當90y2y1x2x1,180時,k0;當90時,k不存在。
    ②過兩點的直線的斜率公式:k(x1x2)
    注意下面四點:
    (1)當x1x2時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;
    (2)k與P1、P2的順序無關;
    (3)以后求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;
    (4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。
    6.高三數(shù)學必修二復習知識點 篇六
    導數(shù)是微積分中的重要基礎概念。當函數(shù)=f(x)的自變量x在一點x0上產(chǎn)生一個增量Δx時,函數(shù)輸出值的增量Δ與自變量增量Δx的比值在Δx趨于0時的極限a如果存在,a即為在x0處的導數(shù),記作f'(x0)或df(x0)/dx。
    導數(shù)是函數(shù)的局部性質(zhì)。一個函數(shù)在某一點的導數(shù)描述了這個函數(shù)在這一點附近的變化率。如果函數(shù)的自變量和取值都是實數(shù)的話,函數(shù)在某一點的導數(shù)就是該函數(shù)所代表的曲線在這一點上的切線斜率。導數(shù)的本質(zhì)是通過極限的概念對函數(shù)進行局部的線性逼近。例如在運動學中,物體的位移對于時間的導數(shù)就是物體的瞬時速度。
    不是所有的函數(shù)都有導數(shù),一個函數(shù)也不一定在所有的點上都有導數(shù)。若某函數(shù)在某一點導數(shù)存在,則稱其在這一點可導,否則稱為不可導。然而,可導的函數(shù)一定連續(xù);不連續(xù)的函數(shù)一定不可導。
    對于可導的函數(shù)f(x),xf'(x)也是一個函數(shù),稱作f(x)的導函數(shù)。尋找已知的函數(shù)在某點的導數(shù)或其導函數(shù)的過程稱為求導。實質(zhì)上,求導就是一個求極限的過程,導數(shù)的四則運算法則也于極限的四則運算法則。反之,已知導函數(shù)也可以倒過來求原來的函數(shù),即不定積分。微積分基本定理說明了求原函數(shù)與積分是等價的。求導和積分是一對互逆的操作,它們都是微積分學中最為基礎的概念。
    設函數(shù)=f(x)在點x0的某個鄰域內(nèi)有定義,當自變量x在x0處有增量Δx,(x0+Δx)也在該鄰域內(nèi)時,相應地函數(shù)取得增量Δ=f(x0+Δx)-f(x0);如果Δ與Δx之比當Δx→0時極限存在,則稱函數(shù)=f(x)在點x0處可導,并稱這個極限為函數(shù)=f(x)在點x0處的導數(shù)記為f'(x0),也記作'│x=x0或d/dx│x=x0