教案應(yīng)包含教學(xué)目標(biāo)、教學(xué)內(nèi)容、教學(xué)步驟、教學(xué)方法和教學(xué)評價等要素。教案編寫要考慮到教學(xué)環(huán)境和條件的限制,實現(xiàn)教學(xué)目標(biāo)的可行性。[教案名字4]
高一數(shù)學(xué)必修一第三章教案篇一
一、課前準(zhǔn)備。
問題3:因為三角形的內(nèi)角和是,四邊形的內(nèi)角和是,五邊形的內(nèi)角和是。
……所以n邊形的內(nèi)角和是。
新知1:從以上事例可一發(fā)現(xiàn):
叫做合情推理。歸納推理和類比推理是數(shù)學(xué)中常用的合情推理。
新知2:類比推理就是根據(jù)兩類不同事物之間具有。
推測其中一類事物具有與另一類事物的性質(zhì)的推理、
簡言之,類比推理是由的推理、
新知3歸納推理就是根據(jù)一些事物的',推出該類事物的。
的推理、歸納是的過程。
例子:哥德巴赫猜想:
觀察6=3+3,8=5+3,10=5+5,12=5+7,14=7+7,。
16=13+3,18=11+7,20=13+7,……,
50=13+37,……,100=3+97,
猜想:
歸納推理的一般步驟。
1通過觀察個別情況發(fā)現(xiàn)某些相同的性質(zhì)。
2從已知的相同性質(zhì)中推出一個明確表達的一般性命題(猜想)。
※典型例題。
例1用推理的形式表示等差數(shù)列1,3,5,7……2n-1,……的前n項和sn的歸納過程。
變式1觀察下列等式:1+3=4=,
1+3+5=9=,
1+3+5+7=16=,
1+3+5+7+9=25=,
……。
你能猜想到一個怎樣的結(jié)論?
變式2觀察下列等式:1=1。
1+8=9,
1+8+27=36,
1+8+27+64=100,
……。
你能猜想到一個怎樣的結(jié)論?
例2設(shè)計算的值,同時作出歸納推理,并用n=40驗證猜想是否正確。
變式:(1)已知數(shù)列的第一項,且,試歸納出這個數(shù)列的通項公式。
例3:找出圓與球的相似之處,并用圓的性質(zhì)類比球的有關(guān)性質(zhì)、
圓的概念和性質(zhì)球的類似概念和性質(zhì)。
圓的周長。
圓的面積。
圓心與弦(非直徑)中點的連線垂直于弦。
與圓心距離相等的弦長相等,
※動手試試。
2如果一條直線和兩條平行線中的一條相交,則必和另一條相交。
3如果兩條直線同時垂直于第三條直線,則這兩條直線互相平行。
三、總結(jié)提升。
※學(xué)習(xí)小結(jié)。
1、歸納推理的定義、
高一數(shù)學(xué)必修一第三章教案篇二
細胞膜、細胞壁、細胞核、細胞質(zhì)均不是細胞器。
一、細胞器之間分工。
1.線粒體:細胞進行有氧呼吸的主要場所。雙層膜(內(nèi)膜向內(nèi)折疊形成脊),分布在動植物細胞體內(nèi)。
2.葉綠體:進行光合作用,“能量轉(zhuǎn)換站”,雙層膜,分布在植物的葉肉細胞。
3.內(nèi)質(zhì)網(wǎng):蛋白質(zhì)合成和加工,以及脂質(zhì)合成的“車間”,單層膜,動植物都有。分為光面內(nèi)質(zhì)網(wǎng)和粗面內(nèi)質(zhì)網(wǎng)(上有核糖體附著)。
4.高爾基體:對來自內(nèi)質(zhì)網(wǎng)的蛋白質(zhì)進行加工、分類和包裝,單層膜,動植物都有,植物細胞中參與了細胞壁的形成。
5.核糖體:無膜,合成蛋白質(zhì)的主要場所。生產(chǎn)蛋白質(zhì)的機器。
包括游離的核糖體(合成胞內(nèi)蛋白)和附著在內(nèi)質(zhì)網(wǎng)上的核糖體(合成分泌蛋白)。
6.溶酶體:內(nèi)含有多種水解酶,能分解衰老、損傷的細胞器,吞噬并殺死侵入細胞的病毒或病菌,單層膜。
溶酶體吞噬過程體現(xiàn)生物膜的流動性。溶酶體起源于高爾基體。
7.液泡:主要存在與植物細胞中,內(nèi)有細胞液,含糖類、無機鹽、色素和蛋白質(zhì)等物質(zhì),可以調(diào)節(jié)植物細胞內(nèi)的環(huán)境,充盈的液泡還可以使植物細胞保持堅挺。與植物細胞的滲透吸水有關(guān)。
8.中心體:動物和某些低等植物的細胞,由兩個相互垂直排列的中心粒及周圍物質(zhì)組成,與細胞的有絲分裂有關(guān),無膜。一個中心體有兩個中心粒組成。
二、分類比較:
1.雙層膜:葉綠體、線粒體(細胞核膜)。
單層膜:內(nèi)質(zhì)網(wǎng)、高爾基體、液泡、溶酶體(細胞膜、類囊體薄膜)。
無膜:中心體、核糖體。
2.植物特有:葉綠體、液泡動物特有(低等植物):中心體。
3.含核酸的細胞器:線粒體、葉綠體(dna)線粒體、葉綠體、核糖體(rna)。
4.增大膜面積的細胞器:線粒體、內(nèi)質(zhì)網(wǎng)、葉綠體。
5.含色素:葉綠體、液泡。
6.能產(chǎn)生atp的:線粒體、葉綠體(細胞質(zhì)基質(zhì))。
7.能自主復(fù)制的細胞器:線粒體、葉綠體、中心體。
8.與有絲分裂有關(guān)的細胞器:核糖體、線粒體、高爾基體(形成細胞壁)、中心體。
9.發(fā)生堿基互補配對:線粒體、葉綠體、核糖體。
10.與主動運輸有關(guān):核糖體、線粒體。
高一數(shù)學(xué)必修一第三章教案篇三
一、教學(xué)目標(biāo):
1、識記消費的不同類型,消費結(jié)構(gòu)的含義以及恩格爾系數(shù)的含義。
2、理解影響消費水平的因素,最主要的是收入水平和物價水平;理解錢貨兩清的消費,貸款消費以及租賃消費時商品所有權(quán)和使用權(quán)的變化。
教學(xué)重難點。
教學(xué)重點、難點:
影響消費水平的因素。
恩格爾系數(shù)的變化的含義。
教學(xué)過程。
教學(xué)內(nèi)容:
(一)情景導(dǎo)入:
學(xué)生活動:就日常生活的體驗得出相應(yīng)的回應(yīng),例如:買文具、食堂吃飯、買零食、買衣服、電話費等日常消費活動。
教師活動:多媒體課件展示豐富多彩的消費活動,其中主要集中于學(xué)生可能并有實際經(jīng)驗的消費內(nèi)容。
所以我們這節(jié)課就影響消費的因素及消費的類型相關(guān)討論。
(二)情景分析:
探究活動一:如何安排生活費?
學(xué)生活動:互相安排并討論各自的消費活動或消費內(nèi)容,發(fā)現(xiàn)其中的區(qū)別。
(1)收入。
教師活動:設(shè)問解疑。
同學(xué)們是否發(fā)現(xiàn)各自的消費有什么不同?而造成這個區(qū)別的原因在此主要是什么?
教師講解:收入是消費的前提與基礎(chǔ)。在其他條件不變的情況下,人們的可支配收入越多,對各種商品和服務(wù)的消費量就越大。收入增長較快的時期,消費增長也較快;反之,當(dāng)收入增長速度下降時,消費增幅也下降。當(dāng)前收入直接影響消費,預(yù)期消費則影響消費信心,當(dāng)預(yù)期消費樂觀時,消費信心就強;預(yù)期消費較低時,消費信心就弱。所以,要提高居民的生活水平,必須保持經(jīng)濟的穩(wěn)定增長,增加居民收入。
(2)物價水平。
教師活動:影響消費的因素除了收入水平還有沒有其他了呢?
學(xué)生活動:就材料進行相應(yīng)的討論,得出初步的結(jié)論,消費活動還受到物價水平的影響。
教師講解:消費品價格的變化會影響人們的購買能力。人們在一定時期的總收入是有限的,如果消費品價格上漲,會引起購買力下降,因而消費需求就降低。反之,則購買力提高,消費需求就增加。因此,物價的穩(wěn)定對保持人們的消費水平,安定生活和穩(wěn)定社會具有重要意義。正是由于這個原因,穩(wěn)定物價才成為國家宏觀調(diào)控的重要目標(biāo)。
教師:雖然我們是用同學(xué)們的消費活動做的說明,但要明白家庭消費的影響因素也是同樣的道理。我們在考察了總體消費狀況的前提下,接著來討論一個具體的消費案例:
探究活動二:小君的苦惱。
(1)按交易方式不同,可分錢貨兩清的消費、貸款消費和租賃消費。
教師活動:按交易方式不同,可分錢貨兩清的消費、貸款消費和租賃消費。
租賃消費也是一種比較常見的消費方式,我們可以通過租賃的方式使商品的所有權(quán)不發(fā)生變更,而獲得該商品在一定期限的使用權(quán)。
貸款消費是一種新興的消費方式,主要用于購買大宗耐用消費品及服務(wù)。因為這些消費品超出消費者當(dāng)前的支付能力,因而預(yù)支自己未來的收入,來滿足當(dāng)前的需要。也就是我們常說的“花明天的錢,園今天的夢”。貸款消費的交易方式,其消費品的所有權(quán)與使用權(quán)沒有完全轉(zhuǎn)移。在消費者按照約定按時還貸的前提下,消費品的所有權(quán)與使用權(quán)逐漸發(fā)生轉(zhuǎn)移,直至還完貸款為止,其所有權(quán)與使用權(quán)才徹底轉(zhuǎn)移到消費者手里。
貸款消費不僅滿足了消費者的生活需要,提高了消費者的生活質(zhì)量,而且促進了經(jīng)濟的發(fā)展,特別是我國經(jīng)濟發(fā)展進入買方市場后,貸款消費對擴大內(nèi)需,拉動經(jīng)濟的增長起來重要的作用。所以,我們要轉(zhuǎn)變傳統(tǒng)的消費觀念,以積極的態(tài)度來對待貸款消費,通過貸款消費滿足來滿足當(dāng)前的需要,通過生活質(zhì)量。當(dāng)然,在貸款消費是也要考慮自己的償還能力,還要講究信用,按時還貸。
學(xué)生活動:就相關(guān)情境進行討論,做出自己的選擇并給出相應(yīng)的解釋理由。
(2)按消費對象分,消費分為有形商品消費和勞務(wù)消費。
教師活動:按消費對象分,消費分為有形商品消費和勞務(wù)消費,有形商品消費消費的是有形的商品,而勞務(wù)消費消費的是無形的服務(wù)。
萬事大吉了!大家知道小君已經(jīng)達到哪種消費層次了嗎?
生存資料消費?發(fā)展資料消費?享受資料消費?
學(xué)生活動:討論并回答相應(yīng)問題,得出享受資料消費的結(jié)論。
(3)按消費的目的不同,可分為生存資料消費、發(fā)展資料消費和享受資料消費。
教師活動:按消費的目的不同,可分為生存資料消費、發(fā)展資料消費和享受資料消費。其中生存資料消費是最基本的消費,滿足較低層次的衣食住用行的需要;發(fā)展資料消費主要指滿足人們發(fā)展德育、智育等方面需要的消費;享受資料消費滿足人們享受的需要。隨著經(jīng)濟水平的提高,發(fā)展資料和享受資料消費將逐漸增加。
探究活動三:考查自己家里的消費結(jié)構(gòu)。
學(xué)生活動:認(rèn)真閱讀并討論得出結(jié)論家庭消費的不同內(nèi)容體現(xiàn)了不同的消費水平。
(1)消費結(jié)構(gòu)。
教師活動:多媒體展示近幾年社會的消費現(xiàn)狀,例:假日旅游、電子產(chǎn)品、汽車等。引導(dǎo)學(xué)生通過不同層面的直觀感受來了解消費結(jié)構(gòu)的變化。
要了解家庭消費水平先要知道一個概念就是消費結(jié)構(gòu),是指人們各類消費支出在消費總支出中所占的比重。消費結(jié)構(gòu)會隨著經(jīng)濟的發(fā)展、收入的變化而不斷變化,變化的方向遵循由生存需要到發(fā)展需要再到享受需要的順序。
(2)恩格爾系數(shù)。
教師活動:恩格爾系數(shù)指食品支出占家庭總支出的比重,用公式表示:恩格爾系數(shù)=食品支出費用/各項消費總支出費用×100%。一般恩格爾系數(shù)越大,越影響其他消費支出,特別是影響發(fā)展資料和享受資料的增加,限制消費層次和消費質(zhì)量的提高,因此生活水平就越低,相反恩格爾系數(shù)減小,生活水平就提高,消費結(jié)構(gòu)會逐步改善。恩格爾系數(shù)是消費結(jié)構(gòu)研究中的重要概念,在國際上受到普遍承認(rèn)和重視。
國際上甚至用它作為區(qū)分國際間消費結(jié)構(gòu)層次高低的最一般標(biāo)準(zhǔn)。聯(lián)合國糧農(nóng)組織在20世紀(jì)70年代中期提出劃分窮國富國的標(biāo)準(zhǔn):恩格爾系數(shù)在60%以上為絕對貧困國家;50%~59%的國家為勉強度日(我們稱之為溫飽型);在40%~49%為小康水平;在20%~39%為富裕水平;20%以下為極富裕國家。
我國這幾年經(jīng)濟結(jié)構(gòu)有了很大改善,消費水平不斷提高。
(三)情景回歸:
教師組織學(xué)生反思總結(jié)本節(jié)課的主要內(nèi)容,并進行當(dāng)堂檢測,了解教學(xué)反饋。
將本文的word文檔下載到電腦,方便收藏和打印。
高一數(shù)學(xué)必修一第三章教案篇四
(1)理解函數(shù)的概念;。
(2)了解區(qū)間的概念;。
2、目標(biāo)解析。
(2)了解區(qū)間的概念就是指能夠體會用區(qū)間表示數(shù)集的意義和作用;。
【問題診斷分析】在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問題是函數(shù)的概念及符號的理解,產(chǎn)生這一問題的原因是:函數(shù)本身就是一個抽象的概念,對學(xué)生來說一個難點。要解決這一問題,就要在通過從實際問題中抽象概況函數(shù)的概念,培養(yǎng)學(xué)生的抽象概況能力,其中關(guān)鍵是理論聯(lián)系實際,把抽象轉(zhuǎn)化為具體。
【教學(xué)過程】。
問題1:一枚炮彈發(fā)射后,經(jīng)過26s落到地面擊中目標(biāo).炮彈的射高為845m,且炮彈距離地面的高度h(單位:m)隨時間t(單位:s)變化的規(guī)律是:h=130t-5t2.
1.1這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?
1.2高度變量h與時間變量t之間的對應(yīng)關(guān)系是否為函數(shù)?若是,其自變量是什么?
設(shè)計意圖:通過以上問題,讓學(xué)生正確理解讓學(xué)生體會用解析式或圖象刻畫兩個變量之間的依賴關(guān)系,從問題的實際意義可知,在t的變化范圍內(nèi)任給一個t,按照給定的對應(yīng)關(guān)系,都有的一個高度h與之對應(yīng)。
問題2:分析教科書中的實例(2),引導(dǎo)學(xué)生看圖并啟發(fā):在t的變化t按照給定的圖象,都有的一個臭氧層空洞面積s與之相對應(yīng)。
問題3:要求學(xué)生仿照實例(1)、(2),描述實例(3)中恩格爾系數(shù)和時間的關(guān)系。
設(shè)計意圖:通過這些問題,讓學(xué)生理解得到函數(shù)的定義,培養(yǎng)學(xué)生的歸納、概況的能力。
高一數(shù)學(xué)必修一第三章教案篇五
(1)通過實物操作,增強學(xué)生的直觀感知。
(2)能根據(jù)幾何結(jié)構(gòu)特征對空間物體進行分類。
(3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結(jié)構(gòu)特征。
(4)會表示有關(guān)于幾何體以及柱、錐、臺的分類。
2.過程與方法。
(1)讓學(xué)生通過直觀感受空間物體,從實物中概括出柱、錐、臺、球的幾何結(jié)構(gòu)特征。
(2)讓學(xué)生觀察、討論、歸納、概括所學(xué)的知識。
3.情感態(tài)度與價值觀。
(1)使學(xué)生感受空間幾何體存在于現(xiàn)實生活周圍,增強學(xué)生學(xué)習(xí)的積極性,同時提高學(xué)生的觀察能力。
(2)培養(yǎng)學(xué)生的空間想象能力和抽象括能力。
二、教學(xué)重點、難點。
重點:讓學(xué)生感受大量空間實物及模型、概括出柱、錐、臺、球的結(jié)構(gòu)特征。
難點:柱、錐、臺、球的結(jié)構(gòu)特征的概括。
三、教學(xué)用具。
(1)學(xué)法:觀察、思考、交流、討論、概括。
(2)實物模型、投影儀。
四、教學(xué)思路。
(一)創(chuàng)設(shè)情景,揭示課題。
1.教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?引導(dǎo)學(xué)生回憶,舉例和相互交流。教師對學(xué)生的活動及時給予評價。
2.所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺、球結(jié)構(gòu)特征的空間物體),你能通過觀察。根據(jù)某種標(biāo)準(zhǔn)對這些空間物體進行分類嗎?這是我們所要學(xué)習(xí)的內(nèi)容。
(二)、研探新知。
1.引導(dǎo)學(xué)生觀察物體、思考、交流、討論,對物體進行分類,分辯棱柱、圓柱、棱錐。
3.組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。(1)有兩個面互相平行;(2)其余各面都是平行四邊形;(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
4.教師與學(xué)生結(jié)合圖形共同得出棱柱相關(guān)概念以及棱柱的表示。
6.以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。
7.讓學(xué)生觀察圓柱,并實物模型演示,如何得到圓柱,從而概括出圓標(biāo)的概念以及相關(guān)的概念及圓柱的表示。
8.引導(dǎo)學(xué)生以類似的方法思考圓錐、圓臺、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實物模型演示引導(dǎo)學(xué)生思考、討論、概括。
9.教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。
(三)質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學(xué)生思考。
1.有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)。
2.棱柱的何兩個平面都可以作為棱柱的底面嗎?
3.課本p8,習(xí)題1.1a組第1題。
5.棱臺與棱柱、棱錐有什么關(guān)系?圓臺與圓柱、圓錐呢?
四、鞏固深化。
練習(xí):課本p7練習(xí)1、2(1)(2)。
課本p8習(xí)題1.1第2、3、4題。
五、歸納整理。
由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容。
六、布置作業(yè)。
課本p8練習(xí)題1.1b組第1題。
課外練習(xí)課本p8習(xí)題1.1b組第2題。
1.2.1空間幾何體的三視圖(1課時)。
高一數(shù)學(xué)必修一第三章教案篇六
3.通過參與編題解題,激發(fā)學(xué)生學(xué)習(xí)的愛好.
教學(xué)重點是通項公式的熟悉;教學(xué)難點是對公式的靈活運用.
實物投影儀,多媒體軟件,電腦.
研探式.
一.復(fù)習(xí)提問
等差數(shù)列的概念是從相鄰兩項的關(guān)系加以定義的,這個關(guān)系用遞推公式來表示比較簡單,但我們要圍繞通項公式作進一步的理解與應(yīng)用.
二.主體設(shè)計
通項公式反映了項與項數(shù)之間的函數(shù)關(guān)系,當(dāng)?shù)炔顢?shù)列的首項與公差確定后,數(shù)列的每一項便確定了,可以求指定的項(即已知求).找學(xué)生試舉一例如:“已知等差數(shù)列中,首項,公差,求.”這是通項公式的簡單應(yīng)用,由學(xué)生解答后,要求每個學(xué)生出一些運用等差數(shù)列通項公式的題目,包括正用、反用與變用,簡單、復(fù)雜,定量、定性的均可,教師巡視將好題搜集起來,分類投影在屏幕上.
1.方程思想的運用
(1)已知等差數(shù)列中,首項,公差,則-397是該數(shù)列的第x項.
(2)已知等差數(shù)列中,首項,則公差
(3)已知等差數(shù)列中,公差,則首項
這一類問題先由學(xué)生解決,之后教師點評,四個量,在一個等式中,運用方程的思想方法,已知其中三個量的值,可以求得第四個量.
2.基本量方法的使用
(1)已知等差數(shù)列中,求的值.
(2)已知等差數(shù)列中,求.
若學(xué)生的題目只有這兩種類型,教師可以小結(jié)(請出題者、解題者概括):因為已知條件可以化為關(guān)于和的二元方程組,所以這些等差數(shù)列是確定的,由和寫出通項公式,便可歸結(jié)為前一類問題.解決這類問題只需把兩個條件(等式)化為關(guān)于和的二元方程組,以求得和,和稱作基本量.
教師提出新的問題,已知等差數(shù)列的一個條件(等式),能否確定一個等差數(shù)列?學(xué)生回答后,教師再啟發(fā),由這一個條件可得到關(guān)于和的二元方程,這是一個和的`制約關(guān)系,從這個關(guān)系可以得到什么結(jié)論?舉例說明(例題可由學(xué)生或教師給出,視具體情況而定).
如:已知等差數(shù)列中,…
由條件可得即,可知,這是比較顯然的,與之相關(guān)的還能有什么結(jié)論?若學(xué)生答不出可提示,一定得某一項的值么?能否與兩項有關(guān)?多項有關(guān)?由學(xué)生發(fā)現(xiàn)規(guī)律,完善問題(3)已知等差數(shù)列中,求;;;;….
類似的還有
(4)已知等差數(shù)列中,求的值.
以上屬于對數(shù)列的項進行定量的研究,有無定性的判定?引出
3.研究等差數(shù)列的單調(diào)性
4.研究項的符號
這是為研究等差數(shù)列前項和的最值所做的預(yù)備工作.可配備的題目如
(1)已知數(shù)列的通項公式為,問數(shù)列從第幾項開始小于0?
(2)等差數(shù)列從第x項起以后每項均為負(fù)數(shù).
三.小結(jié)
1.用方程思想熟悉等差數(shù)列通項公式;
2.用函數(shù)思想解決等差數(shù)列問題.
四.板書設(shè)計
等差數(shù)列通項公式1.方程思想的運用
2.基本量方法的使用
3.研究等差數(shù)列的單調(diào)性
4.研究項的符號
高一數(shù)學(xué)必修一第三章教案篇七
1. 閱讀課本 練習(xí)止.
2. 回答問題
(1)課本內(nèi)容分成幾個層次?每個層次的中心內(nèi)容是什么?
(2)層次間的聯(lián)系是什么?
(3)對數(shù)函數(shù)的定義是什么?
(4)對數(shù)函數(shù)與指數(shù)函數(shù)有什么關(guān)系?
3. 完成 練習(xí)
4. 小結(jié).
二、方法指導(dǎo)
1. 在學(xué)習(xí)對數(shù)函數(shù)時,同學(xué)們應(yīng)從熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認(rèn)識逐步轉(zhuǎn)化為對對數(shù)函數(shù)的認(rèn)識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù)的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì).
一、提問題
1. 對數(shù)函數(shù)的自變量和函數(shù)分別在指數(shù)函數(shù)中是什么?
2.兩個函數(shù)如果互為反函數(shù),則他們的值域,定義域有什么關(guān)系?
3.是否所有的函數(shù)都有反函數(shù)?試舉例說明.
二、變題目
1. 試求下列函數(shù)的反函數(shù):
(1) ; (2) ;
(3) ; (4) .
2. 求下列函數(shù)的定義域:
(1) ; (2) ; (3) .
3. 已知 則 = ; 的定義域為 .
1.對數(shù)函數(shù)的'有關(guān)概念
(1)把函數(shù) 叫做對數(shù)函數(shù), 叫做對數(shù)函數(shù)的底數(shù);
(2)以10為底數(shù)的對數(shù)函數(shù) 為常用對數(shù)函數(shù);
(3)以無理數(shù) 為底數(shù)的對數(shù)函數(shù) 為自然對數(shù)函數(shù).
2. 反函數(shù)的概念
在指數(shù)函數(shù) 中, 是自變量, 是 的函數(shù),其定義域是 ,值域是 ;在對數(shù)函數(shù) 中, 是自變量, 是 的函數(shù),其定義域是 ,值域是 ,像這樣的兩個函數(shù)叫做互為反函數(shù).
3. 與對數(shù)函數(shù)有關(guān)的定義域的求法:
4. 舉例說明如何求反函數(shù).
一、課外作業(yè): 習(xí)題3-5 a組 1,2,3, b組1,
二、課外思考:
1. 求定義域: .
2. 求使函數(shù) 的函數(shù)值恒為負(fù)值的 的取值范圍.
高一數(shù)學(xué)必修一第三章教案篇八
教學(xué)目標(biāo)。
1、理解平面向量的坐標(biāo)的概念;。
2、掌握平面向量的坐標(biāo)運算;。
3、會根據(jù)向量的坐標(biāo),判斷向量是否共線.
教學(xué)重難點。
教學(xué)重點:平面向量的坐標(biāo)運算。
教學(xué)難點:向量的坐標(biāo)表示的理解及運算的準(zhǔn)確性.
教學(xué)過程。
平面向量基本定理:。
什么叫平面的一組基底?
平面的基底有多少組?
引入:。
1.平面內(nèi)建立了直角坐標(biāo)系,點a可以用什么來。
表示?
2.平面向量是否也有類似的表示呢?
高一數(shù)學(xué)必修一第三章教案篇九
1、知識目標(biāo):使學(xué)生理解指數(shù)函數(shù)的定義,初步掌握指數(shù)函數(shù)的圖像和性質(zhì)。
2、能力目標(biāo):通過定義的引入,圖像特征的觀察、發(fā)現(xiàn)過程使學(xué)生懂得理論與實踐的辯證關(guān)系,適時滲透分類討論的數(shù)學(xué)思想,培養(yǎng)學(xué)生的探索發(fā)現(xiàn)能力和分析問題、解決問題的能力。
3、情感目標(biāo):通過學(xué)生的參與過程,培養(yǎng)他們手腦并用、多思勤練的良好學(xué)習(xí)習(xí)慣和勇于探索、鍥而不舍的治學(xué)精神。
高一數(shù)學(xué)必修一第三章教案篇十
1、使學(xué)生了解奇偶性的概念,回會利用定義判定簡單函數(shù)的奇偶性。
2、在奇偶性概念形成過程中,培養(yǎng)學(xué)生的觀察,歸納能力,同時滲透數(shù)形結(jié)合和非凡到一般的思想方法。
3、在學(xué)生感受數(shù)學(xué)美的同時,激發(fā)學(xué)習(xí)的愛好,培養(yǎng)學(xué)生樂于求索的精神。
重點是奇偶性概念的形成與函數(shù)奇偶性的判定。
難點是對概念的熟悉。
投影儀,計算機。
引導(dǎo)發(fā)現(xiàn)法。
一。引入新課。
前面我們已經(jīng)研究了函數(shù)的單調(diào)性,它是反映函數(shù)在某一個區(qū)間上函數(shù)值隨自變量變化而變化的性質(zhì),今天我們繼續(xù)研究函數(shù)的另一個性質(zhì)。從什么角度呢?將從對稱的角度來研究函數(shù)的性質(zhì)。
(學(xué)生可能會舉出一些數(shù)值上的對稱問題,等,也可能會舉出一些圖象的對稱問題,此時教師可以引導(dǎo)學(xué)生把函數(shù)具體化,如和等。)。
學(xué)生經(jīng)過思考,能找出原因,由于函數(shù)是映射,一個只能對一個,而不能有兩個不同的,故函數(shù)的圖象不可能關(guān)于軸對稱。最終提出我們今天將重點研究圖象關(guān)于軸對稱和關(guān)于原點對稱的問題,從形的特征中找出它們在數(shù)值上的規(guī)律。
二。講解新課。
2、函數(shù)的奇偶性(板書)。
學(xué)生開始可能只會用語言去描述:自變量互為相反數(shù),函數(shù)值相等。教師可引導(dǎo)學(xué)生先把它們具體化,再用數(shù)學(xué)符號表示。(借助課件演示令比較得出等式,再令,得到,詳見課件的使用)進而再提出會不會在定義域內(nèi)存在,使與不等呢?(可用課件幫助演示讓動起來觀察,發(fā)現(xiàn)結(jié)論,這樣的是不存在的)從這個結(jié)論中就可以發(fā)現(xiàn)對定義域內(nèi)任意一個,都有成立。最后讓學(xué)生用完整的語言給出定義,不準(zhǔn)確的地方教師予以提示或調(diào)整。
(1)偶函數(shù)的定義:假如對于函數(shù)的定義域內(nèi)任意一個,都有,那么就叫做偶函數(shù)。(板書)。
(給出定義后可讓學(xué)生舉幾個例子,如等以檢驗一下對概念的初步熟悉)。
提出新問題:函數(shù)圖象關(guān)于原點對稱,它的自變量與函數(shù)值之間的數(shù)值規(guī)律是什么呢?(同時打出或的圖象讓學(xué)生觀察研究)。
學(xué)生可類比剛才的方法,很快得出結(jié)論,再讓學(xué)生給出奇函數(shù)的定義。
(2)奇函數(shù)的定義:假如對于函數(shù)的定義域內(nèi)任意一個,都有,那么就叫做奇函數(shù)。(板書)。
(由于在定義形成時已經(jīng)有了一定的熟悉,故可以先作判定,在判定中再加深熟悉)。
例1。判定下列函數(shù)的奇偶性(板書)。
(1);(2);
(3);;
(5);(6)。
(要求學(xué)生口答,選出12個題說過程)。
解:(1)是奇函數(shù)。(2)是偶函數(shù)。
(3),是偶函數(shù)。
學(xué)生經(jīng)過思考可以解決問題,指出只要舉出一個反例說明與不等。如即可說明它不是偶函數(shù)。(從這個問題的解決中讓學(xué)生再次熟悉到定義中任意性的重要)。
從(4)題開始,學(xué)生的答案會有不同,可以讓學(xué)生先討論,教師再做評述。即第(4)題中表面成立的=不能經(jīng)受任意性的考驗,當(dāng)時,由于,故不存在,更談不上與相等了,由于任意性被破壞,所以它不能是奇偶性。
可以用(6)輔助說明充分性不成立,用(5)說明必要性成立,得出結(jié)論。
(3)定義域關(guān)于原點對稱是函數(shù)具有奇偶性的必要但不充分條件。(板書)。
由學(xué)生小結(jié)判定奇偶性的步驟之后,教師再提出新的問題:在剛才的幾個函數(shù)中有是奇函數(shù)不是偶函數(shù),有是偶函數(shù)不是奇函數(shù),也有既不是奇函數(shù)也不是偶函數(shù),那么有沒有這樣的函數(shù),它既是奇函數(shù)也是偶函數(shù)呢?若有,舉例說明。
例2。已知函數(shù)既是奇函數(shù)也是偶函數(shù),求證:。(板書)(試由學(xué)生來完成)。
(4)函數(shù)按其是否具有奇偶性可分為四類:(板書)。
例3。判定下列函數(shù)的奇偶性(板書)。
(1);(2);(3)。
由學(xué)生回答,不完整之處教師補充。
解:(1)當(dāng)時,為奇函數(shù),當(dāng)時,既不是奇函數(shù)也不是偶函數(shù)。
(2)當(dāng)時,既是奇函數(shù)也是偶函數(shù),當(dāng)時,是偶函數(shù)。
(3)當(dāng)時,于是,
當(dāng)時,,于是=,
綜上是奇函數(shù)。
教師小結(jié)(1)(2)注重分類討論的使用,(3)是分段函數(shù),當(dāng)檢驗,并不能說明具備奇偶性,因為奇偶性是對函數(shù)整個定義域內(nèi)性質(zhì)的刻畫,因此必須均有成立,二者缺一不可。
三。小結(jié)。
1、奇偶性的概念。
2、判定中注重的問題。
四。作業(yè)略。
五。板書設(shè)計。
2、函數(shù)的奇偶性例1.例3.
(1)偶函數(shù)定義。
(2)奇函數(shù)定義。
(3)定義域關(guān)于原點對稱是函數(shù)例2。小結(jié)。
具備奇偶性的必要條件。
(4)函數(shù)按奇偶性分類分四類。
(1)定義域為的任意函數(shù)都可以表示成一個奇函數(shù)和一個偶函數(shù)的和,你能試證實之嗎?
(2)判定函數(shù)在上的單調(diào)性,并加以證實。
在此基礎(chǔ)上試?yán)眠@個函數(shù)的單調(diào)性解決下面的問題:
高一數(shù)學(xué)必修一第三章教案篇十一
教學(xué)目標(biāo)。
o了解向量的實際背景,理解平面向量的概念和向量的幾何表示;掌握向量的模、零向量、單位向量、平行向量、相等向量、共線向量等概念;并會區(qū)分平行向量、相等向量和共線向量。
o通過對向量的學(xué)習(xí),使學(xué)生初步認(rèn)識現(xiàn)實生活中的向量和數(shù)量的本質(zhì)區(qū)別。
o通過學(xué)生對向量與數(shù)量的識別能力的訓(xùn)練,培養(yǎng)學(xué)生認(rèn)識客觀事物的數(shù)學(xué)本質(zhì)的能力。
教學(xué)重難點。
教學(xué)重點:理解并掌握向量、零向量、單位向量、相等向量、共線向量的概念,會表示向量。
教學(xué)難點:平行向量、相等向量和共線向量的區(qū)別和聯(lián)系。
教學(xué)過程。
(一)向量的概念:我們把既有大小又有方向的量叫向量。
(二)(教材p74面的四個圖制作成幻燈片)請同學(xué)閱讀課本后回答:(7個問題一次出現(xiàn))。
1、數(shù)量與向量有何區(qū)別?(數(shù)量沒有方向而向量有方向)。
2、如何表示向量?
3、有向線段和線段有何區(qū)別和聯(lián)系?分別可以表示向量的什么?
4、長度為零的向量叫什么向量?長度為1的向量叫什么向量?
5、滿足什么條件的兩個向量是相等向量?單位向量是相等向量嗎?
6、有一組向量,它們的方向相同或相反,這組向量有什么關(guān)系?
7、如果把一組平行向量的起點全部移到一點o,這是它們是不是平行向量?
這時各向量的終點之間有什么關(guān)系?
課后小結(jié)。
1、描述向量的兩個指標(biāo):模和方向。
2、平面向量的概念和向量的幾何表示;
3、向量的模、零向量、單位向量、平行向量等概念。
高一數(shù)學(xué)必修一第三章教案篇十二
>教學(xué)目標(biāo)
落實情況.
解?絕對值不等式注意不要丟掉?這部分解集.。
五、作業(yè)。
1.閱讀課本?含絕對值不等式解法.。
2.習(xí)題?2、3、4。
課堂教學(xué)設(shè)計說明。
1.抓住解型絕對值不等式的關(guān)鍵是絕對值的意義,為此首先通過復(fù)習(xí)讓學(xué)生掌握好絕對值的意義,為解絕對值不等式打下牢固的基礎(chǔ).
2.在解與絕對值不等式中的關(guān)鍵處設(shè)問、質(zhì)疑、點撥,讓學(xué)生融會貫通的掌握它們解法之間的內(nèi)在聯(lián)系,以達到提高學(xué)生解題能力的目的.
3.針對學(xué)生解()絕對值不等式容易出現(xiàn)丟掉這部分解集的錯誤,在教學(xué)中應(yīng)根據(jù)絕對值的意義從數(shù)軸進行突破,并在練習(xí)中糾正這個錯誤,以提高學(xué)生的運算能力.
高一數(shù)學(xué)必修一第三章教案篇十三
在中國古代把數(shù)學(xué)叫算術(shù),又稱算學(xué),最后才改為數(shù)學(xué)。數(shù)學(xué)分為兩部分,一部分是幾何,另一部分是代數(shù)。數(shù)學(xué)網(wǎng)為大家推薦了高一數(shù)學(xué)必修一第三章函數(shù)的應(yīng)用知識點,請大家仔細閱讀,希望你喜歡。
函數(shù)的應(yīng)用這一章包括兩個內(nèi)容,分別是函數(shù)與方程、函數(shù)模型及其應(yīng)用。
函數(shù)與方程這一節(jié)知識匯總。
知識點一:方程的根與函數(shù)的零點。
知識點二:函數(shù)與方程的思想。
知識點三:用二分法求解方程的近似解。
函數(shù)模型及其應(yīng)用這一節(jié)知識匯總。
知識點一:幾類不同增長的.函數(shù)模型(對數(shù)函數(shù)模型、冪函數(shù)模型和指數(shù)函數(shù)模型)。
知識點二:用已知函數(shù)模型解決問題(一次函數(shù)、二次函數(shù)和基本初等函數(shù))。
知識點三:建立實際問題的函數(shù)模型。
在本章中我們要理解函數(shù)與方程的思想,函數(shù)與方程怎么聯(lián)系和轉(zhuǎn)化,這是函數(shù)與方程思想的本質(zhì),函數(shù)反映變量之間的動態(tài)變化規(guī)律,實際生產(chǎn)生活中,這種變化隨處可見,如何利用函數(shù)來揭示,這就是函數(shù)模型所要應(yīng)用的。
高一數(shù)學(xué)必修一第三章教案篇十四
教學(xué)目標(biāo)。
掌握三角函數(shù)模型應(yīng)用基本步驟:
(1)根據(jù)圖象建立解析式;
(2)根據(jù)解析式作出圖象;
(3)將實際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型。
教學(xué)重難點。
利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進行函數(shù)擬合,從而得到函數(shù)模型。
教學(xué)過程。
一、練習(xí)講解:《習(xí)案》作業(yè)十三的第3、4題。
(精確到0.001).
米的速度減少,那么該船在什么時間必須停止卸貨,將船駛向較深的水域。
本題的解答中,給出貨船的進、出港時間,一方面要注意利用周期性以及問題的條件,另一方面還要注意考慮實際意義。關(guān)于課本第64頁的“思考”問題,實際上,在貨船的安全水深正好與港口水深相等時停止卸貨將船駛向較深的水域是不行的,因為這樣不能保證船有足夠的時間發(fā)動螺旋槳。
練習(xí):教材p65面3題。
三、小結(jié):1、三角函數(shù)模型應(yīng)用基本步驟:
(1)根據(jù)圖象建立解析式;
(2)根據(jù)解析式作出圖象;
(3)將實際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型。
2、利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進行函數(shù)擬合,從而得到函數(shù)模型。
四、作業(yè)《習(xí)案》作業(yè)十四及十五。
高一數(shù)學(xué)必修一第三章教案篇十五
掌握用向量方法建立兩角差的余弦公式。通過簡單運用,使學(xué)生初步理解公式的結(jié)構(gòu)及其功能,為建立其它和(差)公式打好基礎(chǔ)。
1.教學(xué)重點:通過探索得到兩角差的余弦公式;
2.教學(xué)難點:探索過程的組織和適當(dāng)引導(dǎo),這里不僅有學(xué)習(xí)積極性的問題,還有探索過程必用的基礎(chǔ)知識是否已經(jīng)具備的問題,運用已學(xué)知識和方法的能力問題,等等。
1.學(xué)法:啟發(fā)式教學(xué)。
2.教學(xué)用具:多媒體。
(一)導(dǎo)入:我們在初中時就知道?,,由此我們能否得到大家可以猜想,是不是等于呢?
(二)探討過程:
在第一章三角函數(shù)的學(xué)習(xí)當(dāng)中我們知道,在設(shè)角的終邊與單位圓的交點為,等于角與單位圓交點的橫坐標(biāo),也可以用角的余弦線來表示,大家思考:怎樣構(gòu)造角和角?(注意:要與它們的正弦線、余弦線聯(lián)系起來。)。
展示多媒體動畫課件,通過正、余弦線及它們之間的幾何關(guān)系探索與xx之間的關(guān)系,由此得到,認(rèn)識兩角差余弦公式的結(jié)構(gòu)。
提示:
1、結(jié)合圖形,明確應(yīng)該選擇哪幾個向量,它們是怎樣表示的?
2、怎樣利用向量的數(shù)量積的概念的計算公式得到探索結(jié)果?
展示多媒體課件。
比較用幾何知識和向量知識解決問題的不同之處,體會向量方法的作用與便利之處。
思考:再利用兩角差的余弦公式得出。
(三)例題講解。
例1、利用和、差角余弦公式求、的值。
解:分析:把、構(gòu)造成兩個特殊角的和、差。
點評:把一個具體角構(gòu)造成兩個角的和、差形式,有很多種構(gòu)造方法,例如:,要學(xué)會靈活運用。
例2、已知,是第三象限角,求的值。
解:因為,由此得。
又因為是第三象限角,所以。
所以。
點評:注意角、的象限,也就是符號問題。
(四)小結(jié):本節(jié)我們學(xué)習(xí)了兩角差的余弦公式,首先要認(rèn)識公式結(jié)構(gòu)的特征,了解公式的推導(dǎo)過程,熟知由此衍變的兩角和的余弦公式。在解題過程中注意角、的象限,也就是符號問題,學(xué)會靈活運用。
高一數(shù)學(xué)必修一第三章教案篇十六
教學(xué)目標(biāo)。
3.讓學(xué)生深刻理解向量在處理平面幾何問題中的優(yōu)越性.
教學(xué)重難點。
教學(xué)重點:用向量方法解決實際問題的基本方法:向量法解決幾何問題的“三步曲”.
教學(xué)難點:如何將幾何等實際問題化歸為向量問題.
教學(xué)過程。
由于向量的線性運算和數(shù)量積運算具有鮮明的幾何背景,平面幾何圖形的許多性質(zhì),如平移、全等、相似、長度、夾角等都可以由向量的線性運算及數(shù)量積表示出來,因此,可用向量方法解決平面幾何中的一些問題,下面我們通過幾個具體實例,說明向量方法在平面幾何中的運用。
思考:
運用向量方法解決平面幾何問題可以分哪幾個步驟?
運用向量方法解決平面幾何問題可以分哪幾個步驟?
“三步曲”:
(2)通過向量運算,研究幾何元素之間的關(guān)系,如距離、夾角等問題;。
(3)把運算結(jié)果“翻譯”成幾何關(guān)系.
高一數(shù)學(xué)必修一第三章教案篇十七
1、教材(教學(xué)內(nèi)容)。
2、設(shè)計理念。
3、教學(xué)目標(biāo)。
情感態(tài)度與價值觀目標(biāo):引導(dǎo)學(xué)生學(xué)會閱讀數(shù)學(xué)教材,學(xué)會發(fā)現(xiàn)和欣賞數(shù)學(xué)的理性之美、
4、重點難點。
重點:任意角三角函數(shù)的定義、
難點:任意角三角函數(shù)這一概念的理解(函數(shù)模型的建立)、類比與化歸思想的滲透、
5、學(xué)情分析。
6、教法分析。
7、學(xué)法分析。
本課時先通過“閱讀”學(xué)習(xí)法,引導(dǎo)學(xué)生改造已有的認(rèn)知結(jié)構(gòu),再通過類比學(xué)習(xí)法引導(dǎo)學(xué)生形成“任意角的三角函數(shù)的定義”,最后引導(dǎo)學(xué)生運用類比學(xué)習(xí)法,來研究三角函數(shù)一些基本性質(zhì)和符號問題,從而使學(xué)生形成新的認(rèn)識結(jié)構(gòu),達成教學(xué)目標(biāo)。
高一數(shù)學(xué)必修一第三章教案篇十八
(2)了解區(qū)間的概念;。
(2)了解區(qū)間的概念就是指能夠體會用區(qū)間表示數(shù)集的意義和作用;。
【問題診斷分析】在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問題是函數(shù)的概念及符號的理解,產(chǎn)生這一問題的原因是:函數(shù)本身就是一個抽象的概念,對學(xué)生來說一個難點。要解決這一問題,就要在通過從實際問題中抽象概況函數(shù)的概念,培養(yǎng)學(xué)生的抽象概況能力,其中關(guān)鍵是理論聯(lián)系實際,把抽象轉(zhuǎn)化為具體。
問題1:一枚炮彈發(fā)射后,經(jīng)過26s落到地面擊中目標(biāo).炮彈的射高為845m,且炮彈距離地面的高度h(單位:m)隨時間t(單位:s)變化的規(guī)律是:h=130t-5t2.
1.1這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?
1.2高度變量h與時間變量t之間的對應(yīng)關(guān)系是否為函數(shù)?若是,其自變量是什么?
設(shè)計意圖:通過以上問題,讓學(xué)生正確理解讓學(xué)生體會用解析式或圖象刻畫兩個變量之間的依賴關(guān)系,從問題的實際意義可知,在t的變化范圍內(nèi)任給一個t,按照給定的對應(yīng)關(guān)系,都有的一個高度h與之對應(yīng)。
問題2:分析教科書中的實例(2),引導(dǎo)學(xué)生看圖并啟發(fā):在t的變化t按照給定的`圖象,都有的一個臭氧層空洞面積s與之相對應(yīng)。
問題3:要求學(xué)生仿照實例(1)、(2),描述實例(3)中恩格爾系數(shù)和時間的關(guān)系。
設(shè)計意圖:通過這些問題,讓學(xué)生理解得到函數(shù)的定義,培養(yǎng)學(xué)生的歸納、概況的能力。
高一數(shù)學(xué)必修一第三章教案篇一
一、課前準(zhǔn)備。
問題3:因為三角形的內(nèi)角和是,四邊形的內(nèi)角和是,五邊形的內(nèi)角和是。
……所以n邊形的內(nèi)角和是。
新知1:從以上事例可一發(fā)現(xiàn):
叫做合情推理。歸納推理和類比推理是數(shù)學(xué)中常用的合情推理。
新知2:類比推理就是根據(jù)兩類不同事物之間具有。
推測其中一類事物具有與另一類事物的性質(zhì)的推理、
簡言之,類比推理是由的推理、
新知3歸納推理就是根據(jù)一些事物的',推出該類事物的。
的推理、歸納是的過程。
例子:哥德巴赫猜想:
觀察6=3+3,8=5+3,10=5+5,12=5+7,14=7+7,。
16=13+3,18=11+7,20=13+7,……,
50=13+37,……,100=3+97,
猜想:
歸納推理的一般步驟。
1通過觀察個別情況發(fā)現(xiàn)某些相同的性質(zhì)。
2從已知的相同性質(zhì)中推出一個明確表達的一般性命題(猜想)。
※典型例題。
例1用推理的形式表示等差數(shù)列1,3,5,7……2n-1,……的前n項和sn的歸納過程。
變式1觀察下列等式:1+3=4=,
1+3+5=9=,
1+3+5+7=16=,
1+3+5+7+9=25=,
……。
你能猜想到一個怎樣的結(jié)論?
變式2觀察下列等式:1=1。
1+8=9,
1+8+27=36,
1+8+27+64=100,
……。
你能猜想到一個怎樣的結(jié)論?
例2設(shè)計算的值,同時作出歸納推理,并用n=40驗證猜想是否正確。
變式:(1)已知數(shù)列的第一項,且,試歸納出這個數(shù)列的通項公式。
例3:找出圓與球的相似之處,并用圓的性質(zhì)類比球的有關(guān)性質(zhì)、
圓的概念和性質(zhì)球的類似概念和性質(zhì)。
圓的周長。
圓的面積。
圓心與弦(非直徑)中點的連線垂直于弦。
與圓心距離相等的弦長相等,
※動手試試。
2如果一條直線和兩條平行線中的一條相交,則必和另一條相交。
3如果兩條直線同時垂直于第三條直線,則這兩條直線互相平行。
三、總結(jié)提升。
※學(xué)習(xí)小結(jié)。
1、歸納推理的定義、
高一數(shù)學(xué)必修一第三章教案篇二
細胞膜、細胞壁、細胞核、細胞質(zhì)均不是細胞器。
一、細胞器之間分工。
1.線粒體:細胞進行有氧呼吸的主要場所。雙層膜(內(nèi)膜向內(nèi)折疊形成脊),分布在動植物細胞體內(nèi)。
2.葉綠體:進行光合作用,“能量轉(zhuǎn)換站”,雙層膜,分布在植物的葉肉細胞。
3.內(nèi)質(zhì)網(wǎng):蛋白質(zhì)合成和加工,以及脂質(zhì)合成的“車間”,單層膜,動植物都有。分為光面內(nèi)質(zhì)網(wǎng)和粗面內(nèi)質(zhì)網(wǎng)(上有核糖體附著)。
4.高爾基體:對來自內(nèi)質(zhì)網(wǎng)的蛋白質(zhì)進行加工、分類和包裝,單層膜,動植物都有,植物細胞中參與了細胞壁的形成。
5.核糖體:無膜,合成蛋白質(zhì)的主要場所。生產(chǎn)蛋白質(zhì)的機器。
包括游離的核糖體(合成胞內(nèi)蛋白)和附著在內(nèi)質(zhì)網(wǎng)上的核糖體(合成分泌蛋白)。
6.溶酶體:內(nèi)含有多種水解酶,能分解衰老、損傷的細胞器,吞噬并殺死侵入細胞的病毒或病菌,單層膜。
溶酶體吞噬過程體現(xiàn)生物膜的流動性。溶酶體起源于高爾基體。
7.液泡:主要存在與植物細胞中,內(nèi)有細胞液,含糖類、無機鹽、色素和蛋白質(zhì)等物質(zhì),可以調(diào)節(jié)植物細胞內(nèi)的環(huán)境,充盈的液泡還可以使植物細胞保持堅挺。與植物細胞的滲透吸水有關(guān)。
8.中心體:動物和某些低等植物的細胞,由兩個相互垂直排列的中心粒及周圍物質(zhì)組成,與細胞的有絲分裂有關(guān),無膜。一個中心體有兩個中心粒組成。
二、分類比較:
1.雙層膜:葉綠體、線粒體(細胞核膜)。
單層膜:內(nèi)質(zhì)網(wǎng)、高爾基體、液泡、溶酶體(細胞膜、類囊體薄膜)。
無膜:中心體、核糖體。
2.植物特有:葉綠體、液泡動物特有(低等植物):中心體。
3.含核酸的細胞器:線粒體、葉綠體(dna)線粒體、葉綠體、核糖體(rna)。
4.增大膜面積的細胞器:線粒體、內(nèi)質(zhì)網(wǎng)、葉綠體。
5.含色素:葉綠體、液泡。
6.能產(chǎn)生atp的:線粒體、葉綠體(細胞質(zhì)基質(zhì))。
7.能自主復(fù)制的細胞器:線粒體、葉綠體、中心體。
8.與有絲分裂有關(guān)的細胞器:核糖體、線粒體、高爾基體(形成細胞壁)、中心體。
9.發(fā)生堿基互補配對:線粒體、葉綠體、核糖體。
10.與主動運輸有關(guān):核糖體、線粒體。
高一數(shù)學(xué)必修一第三章教案篇三
一、教學(xué)目標(biāo):
1、識記消費的不同類型,消費結(jié)構(gòu)的含義以及恩格爾系數(shù)的含義。
2、理解影響消費水平的因素,最主要的是收入水平和物價水平;理解錢貨兩清的消費,貸款消費以及租賃消費時商品所有權(quán)和使用權(quán)的變化。
教學(xué)重難點。
教學(xué)重點、難點:
影響消費水平的因素。
恩格爾系數(shù)的變化的含義。
教學(xué)過程。
教學(xué)內(nèi)容:
(一)情景導(dǎo)入:
學(xué)生活動:就日常生活的體驗得出相應(yīng)的回應(yīng),例如:買文具、食堂吃飯、買零食、買衣服、電話費等日常消費活動。
教師活動:多媒體課件展示豐富多彩的消費活動,其中主要集中于學(xué)生可能并有實際經(jīng)驗的消費內(nèi)容。
所以我們這節(jié)課就影響消費的因素及消費的類型相關(guān)討論。
(二)情景分析:
探究活動一:如何安排生活費?
學(xué)生活動:互相安排并討論各自的消費活動或消費內(nèi)容,發(fā)現(xiàn)其中的區(qū)別。
(1)收入。
教師活動:設(shè)問解疑。
同學(xué)們是否發(fā)現(xiàn)各自的消費有什么不同?而造成這個區(qū)別的原因在此主要是什么?
教師講解:收入是消費的前提與基礎(chǔ)。在其他條件不變的情況下,人們的可支配收入越多,對各種商品和服務(wù)的消費量就越大。收入增長較快的時期,消費增長也較快;反之,當(dāng)收入增長速度下降時,消費增幅也下降。當(dāng)前收入直接影響消費,預(yù)期消費則影響消費信心,當(dāng)預(yù)期消費樂觀時,消費信心就強;預(yù)期消費較低時,消費信心就弱。所以,要提高居民的生活水平,必須保持經(jīng)濟的穩(wěn)定增長,增加居民收入。
(2)物價水平。
教師活動:影響消費的因素除了收入水平還有沒有其他了呢?
學(xué)生活動:就材料進行相應(yīng)的討論,得出初步的結(jié)論,消費活動還受到物價水平的影響。
教師講解:消費品價格的變化會影響人們的購買能力。人們在一定時期的總收入是有限的,如果消費品價格上漲,會引起購買力下降,因而消費需求就降低。反之,則購買力提高,消費需求就增加。因此,物價的穩(wěn)定對保持人們的消費水平,安定生活和穩(wěn)定社會具有重要意義。正是由于這個原因,穩(wěn)定物價才成為國家宏觀調(diào)控的重要目標(biāo)。
教師:雖然我們是用同學(xué)們的消費活動做的說明,但要明白家庭消費的影響因素也是同樣的道理。我們在考察了總體消費狀況的前提下,接著來討論一個具體的消費案例:
探究活動二:小君的苦惱。
(1)按交易方式不同,可分錢貨兩清的消費、貸款消費和租賃消費。
教師活動:按交易方式不同,可分錢貨兩清的消費、貸款消費和租賃消費。
租賃消費也是一種比較常見的消費方式,我們可以通過租賃的方式使商品的所有權(quán)不發(fā)生變更,而獲得該商品在一定期限的使用權(quán)。
貸款消費是一種新興的消費方式,主要用于購買大宗耐用消費品及服務(wù)。因為這些消費品超出消費者當(dāng)前的支付能力,因而預(yù)支自己未來的收入,來滿足當(dāng)前的需要。也就是我們常說的“花明天的錢,園今天的夢”。貸款消費的交易方式,其消費品的所有權(quán)與使用權(quán)沒有完全轉(zhuǎn)移。在消費者按照約定按時還貸的前提下,消費品的所有權(quán)與使用權(quán)逐漸發(fā)生轉(zhuǎn)移,直至還完貸款為止,其所有權(quán)與使用權(quán)才徹底轉(zhuǎn)移到消費者手里。
貸款消費不僅滿足了消費者的生活需要,提高了消費者的生活質(zhì)量,而且促進了經(jīng)濟的發(fā)展,特別是我國經(jīng)濟發(fā)展進入買方市場后,貸款消費對擴大內(nèi)需,拉動經(jīng)濟的增長起來重要的作用。所以,我們要轉(zhuǎn)變傳統(tǒng)的消費觀念,以積極的態(tài)度來對待貸款消費,通過貸款消費滿足來滿足當(dāng)前的需要,通過生活質(zhì)量。當(dāng)然,在貸款消費是也要考慮自己的償還能力,還要講究信用,按時還貸。
學(xué)生活動:就相關(guān)情境進行討論,做出自己的選擇并給出相應(yīng)的解釋理由。
(2)按消費對象分,消費分為有形商品消費和勞務(wù)消費。
教師活動:按消費對象分,消費分為有形商品消費和勞務(wù)消費,有形商品消費消費的是有形的商品,而勞務(wù)消費消費的是無形的服務(wù)。
萬事大吉了!大家知道小君已經(jīng)達到哪種消費層次了嗎?
生存資料消費?發(fā)展資料消費?享受資料消費?
學(xué)生活動:討論并回答相應(yīng)問題,得出享受資料消費的結(jié)論。
(3)按消費的目的不同,可分為生存資料消費、發(fā)展資料消費和享受資料消費。
教師活動:按消費的目的不同,可分為生存資料消費、發(fā)展資料消費和享受資料消費。其中生存資料消費是最基本的消費,滿足較低層次的衣食住用行的需要;發(fā)展資料消費主要指滿足人們發(fā)展德育、智育等方面需要的消費;享受資料消費滿足人們享受的需要。隨著經(jīng)濟水平的提高,發(fā)展資料和享受資料消費將逐漸增加。
探究活動三:考查自己家里的消費結(jié)構(gòu)。
學(xué)生活動:認(rèn)真閱讀并討論得出結(jié)論家庭消費的不同內(nèi)容體現(xiàn)了不同的消費水平。
(1)消費結(jié)構(gòu)。
教師活動:多媒體展示近幾年社會的消費現(xiàn)狀,例:假日旅游、電子產(chǎn)品、汽車等。引導(dǎo)學(xué)生通過不同層面的直觀感受來了解消費結(jié)構(gòu)的變化。
要了解家庭消費水平先要知道一個概念就是消費結(jié)構(gòu),是指人們各類消費支出在消費總支出中所占的比重。消費結(jié)構(gòu)會隨著經(jīng)濟的發(fā)展、收入的變化而不斷變化,變化的方向遵循由生存需要到發(fā)展需要再到享受需要的順序。
(2)恩格爾系數(shù)。
教師活動:恩格爾系數(shù)指食品支出占家庭總支出的比重,用公式表示:恩格爾系數(shù)=食品支出費用/各項消費總支出費用×100%。一般恩格爾系數(shù)越大,越影響其他消費支出,特別是影響發(fā)展資料和享受資料的增加,限制消費層次和消費質(zhì)量的提高,因此生活水平就越低,相反恩格爾系數(shù)減小,生活水平就提高,消費結(jié)構(gòu)會逐步改善。恩格爾系數(shù)是消費結(jié)構(gòu)研究中的重要概念,在國際上受到普遍承認(rèn)和重視。
國際上甚至用它作為區(qū)分國際間消費結(jié)構(gòu)層次高低的最一般標(biāo)準(zhǔn)。聯(lián)合國糧農(nóng)組織在20世紀(jì)70年代中期提出劃分窮國富國的標(biāo)準(zhǔn):恩格爾系數(shù)在60%以上為絕對貧困國家;50%~59%的國家為勉強度日(我們稱之為溫飽型);在40%~49%為小康水平;在20%~39%為富裕水平;20%以下為極富裕國家。
我國這幾年經(jīng)濟結(jié)構(gòu)有了很大改善,消費水平不斷提高。
(三)情景回歸:
教師組織學(xué)生反思總結(jié)本節(jié)課的主要內(nèi)容,并進行當(dāng)堂檢測,了解教學(xué)反饋。
將本文的word文檔下載到電腦,方便收藏和打印。
高一數(shù)學(xué)必修一第三章教案篇四
(1)理解函數(shù)的概念;。
(2)了解區(qū)間的概念;。
2、目標(biāo)解析。
(2)了解區(qū)間的概念就是指能夠體會用區(qū)間表示數(shù)集的意義和作用;。
【問題診斷分析】在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問題是函數(shù)的概念及符號的理解,產(chǎn)生這一問題的原因是:函數(shù)本身就是一個抽象的概念,對學(xué)生來說一個難點。要解決這一問題,就要在通過從實際問題中抽象概況函數(shù)的概念,培養(yǎng)學(xué)生的抽象概況能力,其中關(guān)鍵是理論聯(lián)系實際,把抽象轉(zhuǎn)化為具體。
【教學(xué)過程】。
問題1:一枚炮彈發(fā)射后,經(jīng)過26s落到地面擊中目標(biāo).炮彈的射高為845m,且炮彈距離地面的高度h(單位:m)隨時間t(單位:s)變化的規(guī)律是:h=130t-5t2.
1.1這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?
1.2高度變量h與時間變量t之間的對應(yīng)關(guān)系是否為函數(shù)?若是,其自變量是什么?
設(shè)計意圖:通過以上問題,讓學(xué)生正確理解讓學(xué)生體會用解析式或圖象刻畫兩個變量之間的依賴關(guān)系,從問題的實際意義可知,在t的變化范圍內(nèi)任給一個t,按照給定的對應(yīng)關(guān)系,都有的一個高度h與之對應(yīng)。
問題2:分析教科書中的實例(2),引導(dǎo)學(xué)生看圖并啟發(fā):在t的變化t按照給定的圖象,都有的一個臭氧層空洞面積s與之相對應(yīng)。
問題3:要求學(xué)生仿照實例(1)、(2),描述實例(3)中恩格爾系數(shù)和時間的關(guān)系。
設(shè)計意圖:通過這些問題,讓學(xué)生理解得到函數(shù)的定義,培養(yǎng)學(xué)生的歸納、概況的能力。
高一數(shù)學(xué)必修一第三章教案篇五
(1)通過實物操作,增強學(xué)生的直觀感知。
(2)能根據(jù)幾何結(jié)構(gòu)特征對空間物體進行分類。
(3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結(jié)構(gòu)特征。
(4)會表示有關(guān)于幾何體以及柱、錐、臺的分類。
2.過程與方法。
(1)讓學(xué)生通過直觀感受空間物體,從實物中概括出柱、錐、臺、球的幾何結(jié)構(gòu)特征。
(2)讓學(xué)生觀察、討論、歸納、概括所學(xué)的知識。
3.情感態(tài)度與價值觀。
(1)使學(xué)生感受空間幾何體存在于現(xiàn)實生活周圍,增強學(xué)生學(xué)習(xí)的積極性,同時提高學(xué)生的觀察能力。
(2)培養(yǎng)學(xué)生的空間想象能力和抽象括能力。
二、教學(xué)重點、難點。
重點:讓學(xué)生感受大量空間實物及模型、概括出柱、錐、臺、球的結(jié)構(gòu)特征。
難點:柱、錐、臺、球的結(jié)構(gòu)特征的概括。
三、教學(xué)用具。
(1)學(xué)法:觀察、思考、交流、討論、概括。
(2)實物模型、投影儀。
四、教學(xué)思路。
(一)創(chuàng)設(shè)情景,揭示課題。
1.教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?引導(dǎo)學(xué)生回憶,舉例和相互交流。教師對學(xué)生的活動及時給予評價。
2.所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺、球結(jié)構(gòu)特征的空間物體),你能通過觀察。根據(jù)某種標(biāo)準(zhǔn)對這些空間物體進行分類嗎?這是我們所要學(xué)習(xí)的內(nèi)容。
(二)、研探新知。
1.引導(dǎo)學(xué)生觀察物體、思考、交流、討論,對物體進行分類,分辯棱柱、圓柱、棱錐。
3.組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。(1)有兩個面互相平行;(2)其余各面都是平行四邊形;(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
4.教師與學(xué)生結(jié)合圖形共同得出棱柱相關(guān)概念以及棱柱的表示。
6.以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。
7.讓學(xué)生觀察圓柱,并實物模型演示,如何得到圓柱,從而概括出圓標(biāo)的概念以及相關(guān)的概念及圓柱的表示。
8.引導(dǎo)學(xué)生以類似的方法思考圓錐、圓臺、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實物模型演示引導(dǎo)學(xué)生思考、討論、概括。
9.教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。
(三)質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學(xué)生思考。
1.有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)。
2.棱柱的何兩個平面都可以作為棱柱的底面嗎?
3.課本p8,習(xí)題1.1a組第1題。
5.棱臺與棱柱、棱錐有什么關(guān)系?圓臺與圓柱、圓錐呢?
四、鞏固深化。
練習(xí):課本p7練習(xí)1、2(1)(2)。
課本p8習(xí)題1.1第2、3、4題。
五、歸納整理。
由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容。
六、布置作業(yè)。
課本p8練習(xí)題1.1b組第1題。
課外練習(xí)課本p8習(xí)題1.1b組第2題。
1.2.1空間幾何體的三視圖(1課時)。
高一數(shù)學(xué)必修一第三章教案篇六
3.通過參與編題解題,激發(fā)學(xué)生學(xué)習(xí)的愛好.
教學(xué)重點是通項公式的熟悉;教學(xué)難點是對公式的靈活運用.
實物投影儀,多媒體軟件,電腦.
研探式.
一.復(fù)習(xí)提問
等差數(shù)列的概念是從相鄰兩項的關(guān)系加以定義的,這個關(guān)系用遞推公式來表示比較簡單,但我們要圍繞通項公式作進一步的理解與應(yīng)用.
二.主體設(shè)計
通項公式反映了項與項數(shù)之間的函數(shù)關(guān)系,當(dāng)?shù)炔顢?shù)列的首項與公差確定后,數(shù)列的每一項便確定了,可以求指定的項(即已知求).找學(xué)生試舉一例如:“已知等差數(shù)列中,首項,公差,求.”這是通項公式的簡單應(yīng)用,由學(xué)生解答后,要求每個學(xué)生出一些運用等差數(shù)列通項公式的題目,包括正用、反用與變用,簡單、復(fù)雜,定量、定性的均可,教師巡視將好題搜集起來,分類投影在屏幕上.
1.方程思想的運用
(1)已知等差數(shù)列中,首項,公差,則-397是該數(shù)列的第x項.
(2)已知等差數(shù)列中,首項,則公差
(3)已知等差數(shù)列中,公差,則首項
這一類問題先由學(xué)生解決,之后教師點評,四個量,在一個等式中,運用方程的思想方法,已知其中三個量的值,可以求得第四個量.
2.基本量方法的使用
(1)已知等差數(shù)列中,求的值.
(2)已知等差數(shù)列中,求.
若學(xué)生的題目只有這兩種類型,教師可以小結(jié)(請出題者、解題者概括):因為已知條件可以化為關(guān)于和的二元方程組,所以這些等差數(shù)列是確定的,由和寫出通項公式,便可歸結(jié)為前一類問題.解決這類問題只需把兩個條件(等式)化為關(guān)于和的二元方程組,以求得和,和稱作基本量.
教師提出新的問題,已知等差數(shù)列的一個條件(等式),能否確定一個等差數(shù)列?學(xué)生回答后,教師再啟發(fā),由這一個條件可得到關(guān)于和的二元方程,這是一個和的`制約關(guān)系,從這個關(guān)系可以得到什么結(jié)論?舉例說明(例題可由學(xué)生或教師給出,視具體情況而定).
如:已知等差數(shù)列中,…
由條件可得即,可知,這是比較顯然的,與之相關(guān)的還能有什么結(jié)論?若學(xué)生答不出可提示,一定得某一項的值么?能否與兩項有關(guān)?多項有關(guān)?由學(xué)生發(fā)現(xiàn)規(guī)律,完善問題(3)已知等差數(shù)列中,求;;;;….
類似的還有
(4)已知等差數(shù)列中,求的值.
以上屬于對數(shù)列的項進行定量的研究,有無定性的判定?引出
3.研究等差數(shù)列的單調(diào)性
4.研究項的符號
這是為研究等差數(shù)列前項和的最值所做的預(yù)備工作.可配備的題目如
(1)已知數(shù)列的通項公式為,問數(shù)列從第幾項開始小于0?
(2)等差數(shù)列從第x項起以后每項均為負(fù)數(shù).
三.小結(jié)
1.用方程思想熟悉等差數(shù)列通項公式;
2.用函數(shù)思想解決等差數(shù)列問題.
四.板書設(shè)計
等差數(shù)列通項公式1.方程思想的運用
2.基本量方法的使用
3.研究等差數(shù)列的單調(diào)性
4.研究項的符號
高一數(shù)學(xué)必修一第三章教案篇七
1. 閱讀課本 練習(xí)止.
2. 回答問題
(1)課本內(nèi)容分成幾個層次?每個層次的中心內(nèi)容是什么?
(2)層次間的聯(lián)系是什么?
(3)對數(shù)函數(shù)的定義是什么?
(4)對數(shù)函數(shù)與指數(shù)函數(shù)有什么關(guān)系?
3. 完成 練習(xí)
4. 小結(jié).
二、方法指導(dǎo)
1. 在學(xué)習(xí)對數(shù)函數(shù)時,同學(xué)們應(yīng)從熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認(rèn)識逐步轉(zhuǎn)化為對對數(shù)函數(shù)的認(rèn)識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù)的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì).
一、提問題
1. 對數(shù)函數(shù)的自變量和函數(shù)分別在指數(shù)函數(shù)中是什么?
2.兩個函數(shù)如果互為反函數(shù),則他們的值域,定義域有什么關(guān)系?
3.是否所有的函數(shù)都有反函數(shù)?試舉例說明.
二、變題目
1. 試求下列函數(shù)的反函數(shù):
(1) ; (2) ;
(3) ; (4) .
2. 求下列函數(shù)的定義域:
(1) ; (2) ; (3) .
3. 已知 則 = ; 的定義域為 .
1.對數(shù)函數(shù)的'有關(guān)概念
(1)把函數(shù) 叫做對數(shù)函數(shù), 叫做對數(shù)函數(shù)的底數(shù);
(2)以10為底數(shù)的對數(shù)函數(shù) 為常用對數(shù)函數(shù);
(3)以無理數(shù) 為底數(shù)的對數(shù)函數(shù) 為自然對數(shù)函數(shù).
2. 反函數(shù)的概念
在指數(shù)函數(shù) 中, 是自變量, 是 的函數(shù),其定義域是 ,值域是 ;在對數(shù)函數(shù) 中, 是自變量, 是 的函數(shù),其定義域是 ,值域是 ,像這樣的兩個函數(shù)叫做互為反函數(shù).
3. 與對數(shù)函數(shù)有關(guān)的定義域的求法:
4. 舉例說明如何求反函數(shù).
一、課外作業(yè): 習(xí)題3-5 a組 1,2,3, b組1,
二、課外思考:
1. 求定義域: .
2. 求使函數(shù) 的函數(shù)值恒為負(fù)值的 的取值范圍.
高一數(shù)學(xué)必修一第三章教案篇八
教學(xué)目標(biāo)。
1、理解平面向量的坐標(biāo)的概念;。
2、掌握平面向量的坐標(biāo)運算;。
3、會根據(jù)向量的坐標(biāo),判斷向量是否共線.
教學(xué)重難點。
教學(xué)重點:平面向量的坐標(biāo)運算。
教學(xué)難點:向量的坐標(biāo)表示的理解及運算的準(zhǔn)確性.
教學(xué)過程。
平面向量基本定理:。
什么叫平面的一組基底?
平面的基底有多少組?
引入:。
1.平面內(nèi)建立了直角坐標(biāo)系,點a可以用什么來。
表示?
2.平面向量是否也有類似的表示呢?
高一數(shù)學(xué)必修一第三章教案篇九
1、知識目標(biāo):使學(xué)生理解指數(shù)函數(shù)的定義,初步掌握指數(shù)函數(shù)的圖像和性質(zhì)。
2、能力目標(biāo):通過定義的引入,圖像特征的觀察、發(fā)現(xiàn)過程使學(xué)生懂得理論與實踐的辯證關(guān)系,適時滲透分類討論的數(shù)學(xué)思想,培養(yǎng)學(xué)生的探索發(fā)現(xiàn)能力和分析問題、解決問題的能力。
3、情感目標(biāo):通過學(xué)生的參與過程,培養(yǎng)他們手腦并用、多思勤練的良好學(xué)習(xí)習(xí)慣和勇于探索、鍥而不舍的治學(xué)精神。
高一數(shù)學(xué)必修一第三章教案篇十
1、使學(xué)生了解奇偶性的概念,回會利用定義判定簡單函數(shù)的奇偶性。
2、在奇偶性概念形成過程中,培養(yǎng)學(xué)生的觀察,歸納能力,同時滲透數(shù)形結(jié)合和非凡到一般的思想方法。
3、在學(xué)生感受數(shù)學(xué)美的同時,激發(fā)學(xué)習(xí)的愛好,培養(yǎng)學(xué)生樂于求索的精神。
重點是奇偶性概念的形成與函數(shù)奇偶性的判定。
難點是對概念的熟悉。
投影儀,計算機。
引導(dǎo)發(fā)現(xiàn)法。
一。引入新課。
前面我們已經(jīng)研究了函數(shù)的單調(diào)性,它是反映函數(shù)在某一個區(qū)間上函數(shù)值隨自變量變化而變化的性質(zhì),今天我們繼續(xù)研究函數(shù)的另一個性質(zhì)。從什么角度呢?將從對稱的角度來研究函數(shù)的性質(zhì)。
(學(xué)生可能會舉出一些數(shù)值上的對稱問題,等,也可能會舉出一些圖象的對稱問題,此時教師可以引導(dǎo)學(xué)生把函數(shù)具體化,如和等。)。
學(xué)生經(jīng)過思考,能找出原因,由于函數(shù)是映射,一個只能對一個,而不能有兩個不同的,故函數(shù)的圖象不可能關(guān)于軸對稱。最終提出我們今天將重點研究圖象關(guān)于軸對稱和關(guān)于原點對稱的問題,從形的特征中找出它們在數(shù)值上的規(guī)律。
二。講解新課。
2、函數(shù)的奇偶性(板書)。
學(xué)生開始可能只會用語言去描述:自變量互為相反數(shù),函數(shù)值相等。教師可引導(dǎo)學(xué)生先把它們具體化,再用數(shù)學(xué)符號表示。(借助課件演示令比較得出等式,再令,得到,詳見課件的使用)進而再提出會不會在定義域內(nèi)存在,使與不等呢?(可用課件幫助演示讓動起來觀察,發(fā)現(xiàn)結(jié)論,這樣的是不存在的)從這個結(jié)論中就可以發(fā)現(xiàn)對定義域內(nèi)任意一個,都有成立。最后讓學(xué)生用完整的語言給出定義,不準(zhǔn)確的地方教師予以提示或調(diào)整。
(1)偶函數(shù)的定義:假如對于函數(shù)的定義域內(nèi)任意一個,都有,那么就叫做偶函數(shù)。(板書)。
(給出定義后可讓學(xué)生舉幾個例子,如等以檢驗一下對概念的初步熟悉)。
提出新問題:函數(shù)圖象關(guān)于原點對稱,它的自變量與函數(shù)值之間的數(shù)值規(guī)律是什么呢?(同時打出或的圖象讓學(xué)生觀察研究)。
學(xué)生可類比剛才的方法,很快得出結(jié)論,再讓學(xué)生給出奇函數(shù)的定義。
(2)奇函數(shù)的定義:假如對于函數(shù)的定義域內(nèi)任意一個,都有,那么就叫做奇函數(shù)。(板書)。
(由于在定義形成時已經(jīng)有了一定的熟悉,故可以先作判定,在判定中再加深熟悉)。
例1。判定下列函數(shù)的奇偶性(板書)。
(1);(2);
(3);;
(5);(6)。
(要求學(xué)生口答,選出12個題說過程)。
解:(1)是奇函數(shù)。(2)是偶函數(shù)。
(3),是偶函數(shù)。
學(xué)生經(jīng)過思考可以解決問題,指出只要舉出一個反例說明與不等。如即可說明它不是偶函數(shù)。(從這個問題的解決中讓學(xué)生再次熟悉到定義中任意性的重要)。
從(4)題開始,學(xué)生的答案會有不同,可以讓學(xué)生先討論,教師再做評述。即第(4)題中表面成立的=不能經(jīng)受任意性的考驗,當(dāng)時,由于,故不存在,更談不上與相等了,由于任意性被破壞,所以它不能是奇偶性。
可以用(6)輔助說明充分性不成立,用(5)說明必要性成立,得出結(jié)論。
(3)定義域關(guān)于原點對稱是函數(shù)具有奇偶性的必要但不充分條件。(板書)。
由學(xué)生小結(jié)判定奇偶性的步驟之后,教師再提出新的問題:在剛才的幾個函數(shù)中有是奇函數(shù)不是偶函數(shù),有是偶函數(shù)不是奇函數(shù),也有既不是奇函數(shù)也不是偶函數(shù),那么有沒有這樣的函數(shù),它既是奇函數(shù)也是偶函數(shù)呢?若有,舉例說明。
例2。已知函數(shù)既是奇函數(shù)也是偶函數(shù),求證:。(板書)(試由學(xué)生來完成)。
(4)函數(shù)按其是否具有奇偶性可分為四類:(板書)。
例3。判定下列函數(shù)的奇偶性(板書)。
(1);(2);(3)。
由學(xué)生回答,不完整之處教師補充。
解:(1)當(dāng)時,為奇函數(shù),當(dāng)時,既不是奇函數(shù)也不是偶函數(shù)。
(2)當(dāng)時,既是奇函數(shù)也是偶函數(shù),當(dāng)時,是偶函數(shù)。
(3)當(dāng)時,于是,
當(dāng)時,,于是=,
綜上是奇函數(shù)。
教師小結(jié)(1)(2)注重分類討論的使用,(3)是分段函數(shù),當(dāng)檢驗,并不能說明具備奇偶性,因為奇偶性是對函數(shù)整個定義域內(nèi)性質(zhì)的刻畫,因此必須均有成立,二者缺一不可。
三。小結(jié)。
1、奇偶性的概念。
2、判定中注重的問題。
四。作業(yè)略。
五。板書設(shè)計。
2、函數(shù)的奇偶性例1.例3.
(1)偶函數(shù)定義。
(2)奇函數(shù)定義。
(3)定義域關(guān)于原點對稱是函數(shù)例2。小結(jié)。
具備奇偶性的必要條件。
(4)函數(shù)按奇偶性分類分四類。
(1)定義域為的任意函數(shù)都可以表示成一個奇函數(shù)和一個偶函數(shù)的和,你能試證實之嗎?
(2)判定函數(shù)在上的單調(diào)性,并加以證實。
在此基礎(chǔ)上試?yán)眠@個函數(shù)的單調(diào)性解決下面的問題:
高一數(shù)學(xué)必修一第三章教案篇十一
教學(xué)目標(biāo)。
o了解向量的實際背景,理解平面向量的概念和向量的幾何表示;掌握向量的模、零向量、單位向量、平行向量、相等向量、共線向量等概念;并會區(qū)分平行向量、相等向量和共線向量。
o通過對向量的學(xué)習(xí),使學(xué)生初步認(rèn)識現(xiàn)實生活中的向量和數(shù)量的本質(zhì)區(qū)別。
o通過學(xué)生對向量與數(shù)量的識別能力的訓(xùn)練,培養(yǎng)學(xué)生認(rèn)識客觀事物的數(shù)學(xué)本質(zhì)的能力。
教學(xué)重難點。
教學(xué)重點:理解并掌握向量、零向量、單位向量、相等向量、共線向量的概念,會表示向量。
教學(xué)難點:平行向量、相等向量和共線向量的區(qū)別和聯(lián)系。
教學(xué)過程。
(一)向量的概念:我們把既有大小又有方向的量叫向量。
(二)(教材p74面的四個圖制作成幻燈片)請同學(xué)閱讀課本后回答:(7個問題一次出現(xiàn))。
1、數(shù)量與向量有何區(qū)別?(數(shù)量沒有方向而向量有方向)。
2、如何表示向量?
3、有向線段和線段有何區(qū)別和聯(lián)系?分別可以表示向量的什么?
4、長度為零的向量叫什么向量?長度為1的向量叫什么向量?
5、滿足什么條件的兩個向量是相等向量?單位向量是相等向量嗎?
6、有一組向量,它們的方向相同或相反,這組向量有什么關(guān)系?
7、如果把一組平行向量的起點全部移到一點o,這是它們是不是平行向量?
這時各向量的終點之間有什么關(guān)系?
課后小結(jié)。
1、描述向量的兩個指標(biāo):模和方向。
2、平面向量的概念和向量的幾何表示;
3、向量的模、零向量、單位向量、平行向量等概念。
高一數(shù)學(xué)必修一第三章教案篇十二
>教學(xué)目標(biāo)
落實情況.
解?絕對值不等式注意不要丟掉?這部分解集.。
五、作業(yè)。
1.閱讀課本?含絕對值不等式解法.。
2.習(xí)題?2、3、4。
課堂教學(xué)設(shè)計說明。
1.抓住解型絕對值不等式的關(guān)鍵是絕對值的意義,為此首先通過復(fù)習(xí)讓學(xué)生掌握好絕對值的意義,為解絕對值不等式打下牢固的基礎(chǔ).
2.在解與絕對值不等式中的關(guān)鍵處設(shè)問、質(zhì)疑、點撥,讓學(xué)生融會貫通的掌握它們解法之間的內(nèi)在聯(lián)系,以達到提高學(xué)生解題能力的目的.
3.針對學(xué)生解()絕對值不等式容易出現(xiàn)丟掉這部分解集的錯誤,在教學(xué)中應(yīng)根據(jù)絕對值的意義從數(shù)軸進行突破,并在練習(xí)中糾正這個錯誤,以提高學(xué)生的運算能力.
高一數(shù)學(xué)必修一第三章教案篇十三
在中國古代把數(shù)學(xué)叫算術(shù),又稱算學(xué),最后才改為數(shù)學(xué)。數(shù)學(xué)分為兩部分,一部分是幾何,另一部分是代數(shù)。數(shù)學(xué)網(wǎng)為大家推薦了高一數(shù)學(xué)必修一第三章函數(shù)的應(yīng)用知識點,請大家仔細閱讀,希望你喜歡。
函數(shù)的應(yīng)用這一章包括兩個內(nèi)容,分別是函數(shù)與方程、函數(shù)模型及其應(yīng)用。
函數(shù)與方程這一節(jié)知識匯總。
知識點一:方程的根與函數(shù)的零點。
知識點二:函數(shù)與方程的思想。
知識點三:用二分法求解方程的近似解。
函數(shù)模型及其應(yīng)用這一節(jié)知識匯總。
知識點一:幾類不同增長的.函數(shù)模型(對數(shù)函數(shù)模型、冪函數(shù)模型和指數(shù)函數(shù)模型)。
知識點二:用已知函數(shù)模型解決問題(一次函數(shù)、二次函數(shù)和基本初等函數(shù))。
知識點三:建立實際問題的函數(shù)模型。
在本章中我們要理解函數(shù)與方程的思想,函數(shù)與方程怎么聯(lián)系和轉(zhuǎn)化,這是函數(shù)與方程思想的本質(zhì),函數(shù)反映變量之間的動態(tài)變化規(guī)律,實際生產(chǎn)生活中,這種變化隨處可見,如何利用函數(shù)來揭示,這就是函數(shù)模型所要應(yīng)用的。
高一數(shù)學(xué)必修一第三章教案篇十四
教學(xué)目標(biāo)。
掌握三角函數(shù)模型應(yīng)用基本步驟:
(1)根據(jù)圖象建立解析式;
(2)根據(jù)解析式作出圖象;
(3)將實際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型。
教學(xué)重難點。
利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進行函數(shù)擬合,從而得到函數(shù)模型。
教學(xué)過程。
一、練習(xí)講解:《習(xí)案》作業(yè)十三的第3、4題。
(精確到0.001).
米的速度減少,那么該船在什么時間必須停止卸貨,將船駛向較深的水域。
本題的解答中,給出貨船的進、出港時間,一方面要注意利用周期性以及問題的條件,另一方面還要注意考慮實際意義。關(guān)于課本第64頁的“思考”問題,實際上,在貨船的安全水深正好與港口水深相等時停止卸貨將船駛向較深的水域是不行的,因為這樣不能保證船有足夠的時間發(fā)動螺旋槳。
練習(xí):教材p65面3題。
三、小結(jié):1、三角函數(shù)模型應(yīng)用基本步驟:
(1)根據(jù)圖象建立解析式;
(2)根據(jù)解析式作出圖象;
(3)將實際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型。
2、利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進行函數(shù)擬合,從而得到函數(shù)模型。
四、作業(yè)《習(xí)案》作業(yè)十四及十五。
高一數(shù)學(xué)必修一第三章教案篇十五
掌握用向量方法建立兩角差的余弦公式。通過簡單運用,使學(xué)生初步理解公式的結(jié)構(gòu)及其功能,為建立其它和(差)公式打好基礎(chǔ)。
1.教學(xué)重點:通過探索得到兩角差的余弦公式;
2.教學(xué)難點:探索過程的組織和適當(dāng)引導(dǎo),這里不僅有學(xué)習(xí)積極性的問題,還有探索過程必用的基礎(chǔ)知識是否已經(jīng)具備的問題,運用已學(xué)知識和方法的能力問題,等等。
1.學(xué)法:啟發(fā)式教學(xué)。
2.教學(xué)用具:多媒體。
(一)導(dǎo)入:我們在初中時就知道?,,由此我們能否得到大家可以猜想,是不是等于呢?
(二)探討過程:
在第一章三角函數(shù)的學(xué)習(xí)當(dāng)中我們知道,在設(shè)角的終邊與單位圓的交點為,等于角與單位圓交點的橫坐標(biāo),也可以用角的余弦線來表示,大家思考:怎樣構(gòu)造角和角?(注意:要與它們的正弦線、余弦線聯(lián)系起來。)。
展示多媒體動畫課件,通過正、余弦線及它們之間的幾何關(guān)系探索與xx之間的關(guān)系,由此得到,認(rèn)識兩角差余弦公式的結(jié)構(gòu)。
提示:
1、結(jié)合圖形,明確應(yīng)該選擇哪幾個向量,它們是怎樣表示的?
2、怎樣利用向量的數(shù)量積的概念的計算公式得到探索結(jié)果?
展示多媒體課件。
比較用幾何知識和向量知識解決問題的不同之處,體會向量方法的作用與便利之處。
思考:再利用兩角差的余弦公式得出。
(三)例題講解。
例1、利用和、差角余弦公式求、的值。
解:分析:把、構(gòu)造成兩個特殊角的和、差。
點評:把一個具體角構(gòu)造成兩個角的和、差形式,有很多種構(gòu)造方法,例如:,要學(xué)會靈活運用。
例2、已知,是第三象限角,求的值。
解:因為,由此得。
又因為是第三象限角,所以。
所以。
點評:注意角、的象限,也就是符號問題。
(四)小結(jié):本節(jié)我們學(xué)習(xí)了兩角差的余弦公式,首先要認(rèn)識公式結(jié)構(gòu)的特征,了解公式的推導(dǎo)過程,熟知由此衍變的兩角和的余弦公式。在解題過程中注意角、的象限,也就是符號問題,學(xué)會靈活運用。
高一數(shù)學(xué)必修一第三章教案篇十六
教學(xué)目標(biāo)。
3.讓學(xué)生深刻理解向量在處理平面幾何問題中的優(yōu)越性.
教學(xué)重難點。
教學(xué)重點:用向量方法解決實際問題的基本方法:向量法解決幾何問題的“三步曲”.
教學(xué)難點:如何將幾何等實際問題化歸為向量問題.
教學(xué)過程。
由于向量的線性運算和數(shù)量積運算具有鮮明的幾何背景,平面幾何圖形的許多性質(zhì),如平移、全等、相似、長度、夾角等都可以由向量的線性運算及數(shù)量積表示出來,因此,可用向量方法解決平面幾何中的一些問題,下面我們通過幾個具體實例,說明向量方法在平面幾何中的運用。
思考:
運用向量方法解決平面幾何問題可以分哪幾個步驟?
運用向量方法解決平面幾何問題可以分哪幾個步驟?
“三步曲”:
(2)通過向量運算,研究幾何元素之間的關(guān)系,如距離、夾角等問題;。
(3)把運算結(jié)果“翻譯”成幾何關(guān)系.
高一數(shù)學(xué)必修一第三章教案篇十七
1、教材(教學(xué)內(nèi)容)。
2、設(shè)計理念。
3、教學(xué)目標(biāo)。
情感態(tài)度與價值觀目標(biāo):引導(dǎo)學(xué)生學(xué)會閱讀數(shù)學(xué)教材,學(xué)會發(fā)現(xiàn)和欣賞數(shù)學(xué)的理性之美、
4、重點難點。
重點:任意角三角函數(shù)的定義、
難點:任意角三角函數(shù)這一概念的理解(函數(shù)模型的建立)、類比與化歸思想的滲透、
5、學(xué)情分析。
6、教法分析。
7、學(xué)法分析。
本課時先通過“閱讀”學(xué)習(xí)法,引導(dǎo)學(xué)生改造已有的認(rèn)知結(jié)構(gòu),再通過類比學(xué)習(xí)法引導(dǎo)學(xué)生形成“任意角的三角函數(shù)的定義”,最后引導(dǎo)學(xué)生運用類比學(xué)習(xí)法,來研究三角函數(shù)一些基本性質(zhì)和符號問題,從而使學(xué)生形成新的認(rèn)識結(jié)構(gòu),達成教學(xué)目標(biāo)。
高一數(shù)學(xué)必修一第三章教案篇十八
(2)了解區(qū)間的概念;。
(2)了解區(qū)間的概念就是指能夠體會用區(qū)間表示數(shù)集的意義和作用;。
【問題診斷分析】在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問題是函數(shù)的概念及符號的理解,產(chǎn)生這一問題的原因是:函數(shù)本身就是一個抽象的概念,對學(xué)生來說一個難點。要解決這一問題,就要在通過從實際問題中抽象概況函數(shù)的概念,培養(yǎng)學(xué)生的抽象概況能力,其中關(guān)鍵是理論聯(lián)系實際,把抽象轉(zhuǎn)化為具體。
問題1:一枚炮彈發(fā)射后,經(jīng)過26s落到地面擊中目標(biāo).炮彈的射高為845m,且炮彈距離地面的高度h(單位:m)隨時間t(單位:s)變化的規(guī)律是:h=130t-5t2.
1.1這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?
1.2高度變量h與時間變量t之間的對應(yīng)關(guān)系是否為函數(shù)?若是,其自變量是什么?
設(shè)計意圖:通過以上問題,讓學(xué)生正確理解讓學(xué)生體會用解析式或圖象刻畫兩個變量之間的依賴關(guān)系,從問題的實際意義可知,在t的變化范圍內(nèi)任給一個t,按照給定的對應(yīng)關(guān)系,都有的一個高度h與之對應(yīng)。
問題2:分析教科書中的實例(2),引導(dǎo)學(xué)生看圖并啟發(fā):在t的變化t按照給定的`圖象,都有的一個臭氧層空洞面積s與之相對應(yīng)。
問題3:要求學(xué)生仿照實例(1)、(2),描述實例(3)中恩格爾系數(shù)和時間的關(guān)系。
設(shè)計意圖:通過這些問題,讓學(xué)生理解得到函數(shù)的定義,培養(yǎng)學(xué)生的歸納、概況的能力。